952 resultados para VACCINES
Resumo:
Vaccines to prevent PV infection, utilising PV L1 virus like particles (VLPs) to induce neutralising antibody, are in clinical trial and show all the characteristics likely to be associated with success. Results warrant global planning for the deployment of VLP vaccines within a decade, as part of a program to prevent cervical cancer. Vaccines designed to treat existing PV infection by inducing therapeutic cellular immunity targeted to PV proteins are at a much earlier stage of development. The wide choice of potential and proposed antigens, routes and mechanisms of delivery, and possible treatment regimens suggest that, to move the field forward, surrogate markers allowing comparison of the relative efficacy of different vaccine approaches are required. These should be based on reduction in load of virus infection, and need to be validated in animal models or in man. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Prophylactic vaccines for genital human papillomavirus (HPV) infection have been shown to be feasible in animal models, and suitable vaccine material based on virus-like particles can be produced in bulk at reasonable cost. Initiation of phase III clinical trials will follow definition of trial outcome measures through further epidemiological studies, and development-of assays of host protective immunity. Vaccines could in principle eliminate HPV-related disease, as the human race is the only natural host for the relevant papillomaviruses (PVs). Therapeutic vaccines for genital HPV infection are also possible, but have not yet been demonstrated as feasible in practice because the choice of vaccine antigens is difficult, the method of their optimal delivery is uncertain, and the nature of the relevant antiviral immunity is unknown. PV species specificity will require trials to be conducted in man, which will slow definition of an ideal vaccine.
Resumo:
Because of the advent of a new influenza A H1N1. strain, many countries have begun mass immunisation programmes. Awareness of the background rates of possible adverse events will be a crucial part of assessment of possible vaccine safety concerns and will help to separate legitimate safety concerns from events that are temporally associated with but not caused by vaccination. We identified background rates of selected medical events for several countries. Rates of disease events varied by age, sex, method of ascertainment, and geography. Highly visible health conditions, such as Guillain-Barre syndrome, spontaneous abortion, or even death, will occur in coincident temporal association with novel influenza vaccination. On the basis of the reviewed data, if a cohort of 10 million individuals was vaccinated in the UK, 21.5 cases of Guillain-Barre syndrome and 5.75 cases of sudden death would be expected to occur within 6 weeks of vaccination as coincident background cases. In female vaccinees in the USA, 86.3 cases of optic neuritis per 10 million population would be expected within 6 weeks of vaccination. 397 per 1 million vaccinated pregnant women would be predicted to have a spontaneous abortion within 1 day of vaccination.
Resumo:
Experimental models of infection are good tools for establishing immunological parameters that have an effect on the host-pathogen relationship and also for designing new vaccines and immune therapies. In this work, we evaluated the evolution of experimental tuberculosis in mice infected with increasing bacterial doses or via distinct routes. We showed that mice infected with low bacterial doses by the intratracheal route were able to develop a progressive infection that was proportional to the inoculum size. In the initial phase of disease, mice developed a specific Th1-driven immune response independent of inoculum concentration. However, in the late phase, mice infected with higher concentrations exhibited a mixed Th1/Th2 response, while mice infected with lower concentrations sustained the Th1 pattern. Significant IL-10 concentrations and a more preeminent T regulatory cell recruitment were also detected at 70 days post-infection with high bacterial doses. These results suggest that mice infected with higher concentrations of bacilli developed an immune response similar to the pattern described for human tuberculosis wherein patients with progressive tuberculosis exhibit a down modulation of IFN-gamma production accompanied by increased levels of IL-4. Thus, these data indicate that the experimental model is important in evaluating the protective efficacy of new vaccines and therapies against tuberculosis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Methyl tetra-O-allyl, and tetra-O-[2-(tetrahydro-2H-pyranyl)oxy.-3-oxapentyl glucosides, and tetra-O-(cyanoethyl)galactosyl azide were converted into derivatives containing linkers with terminal carboxylic acid functionalities at the anomeric position and bearing four arms with phthaloyl- or BOC-protected terminal amino groups. These molecules were suitable for use in solid-phase peptide synthesis and for the preparation of dendrimers, containing multiple copies of peptides. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
CD8 alpha beta cytotoxic T lymphocyte (CTL) polyepitope or polytope vaccines have traditionally been delivered using recombinant vector or DNA based delivery modalities. Here we show the delivery of polytope vaccines in the form of either synthetic polypeptides or recombinant polytope proteins by ImmunoStimulatory COMplexes (ISCOMs (R)). Induction of multiple protective CTL responses by these polytope-ISCOM formulations were comparable to viral vector or DNA based delivery modalities as assessed by IFN gamma ELISpot, chromium release and viral challenge assays. Measurement of CTL responses specific for the different epitopes revealed imunodominance patterns, which were largely independent of the vaccine vector or the order of the epitopes in the polytope. ISCOMs thus emerge as a viable human delivery modality for protein-based polytope vaccines. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials. (C) 2002 Elsevier Science (USA).
Resumo:
Lipophilic polyfunctional carbohydrate core/templates have been designed and developed for drug/vaccine delivery. Three carbohydrate-based templates containing four protected N-terminal arms were synthesised from glucose and galactose. Methyl alpha-D-glucopyranoside was converted to two derivatives bearing a carboxylic acid handle for attachment to solid supports, spacer arms of differing hydrophilicity, and phthaloyl-protected amino groups suitable for peptide chain extension. beta-D-Galactopyranosyl azide was converted to a template bearing a carboxylic acid handle and four BOC-protected amines. All the templates were found to be suitable for attachment to solid supports and subsequent cleavage from resins, using either BOC- or FMOC-methodologies.
Resumo:
Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Candidate prophylactic vaccines based on papillomavirus L1 virus-like particles (VLPs) are currently in human clinical trials. The main long-term goal of the vaccine is to reduce the incidence of cervical cancer and its precursors. In animal papillomavirus models, systemic immunization with L1 VLPs can induce high titers of neutralizing antibodies that confer protection against high-dose experimental papillomavirus challenge. In humans, systemic vaccination with L1 VLPs has been well tolerated and induced high serum antibody titers (at least 40 times higher than titers seen following natural infection). A recent proof of principle HPV16 L1 VLP efficacy trial has shown excellent protection against persistent HPV16 infection and associated cytological abnormalities. Large scale efficacy trials of L1 VLPs from HPV16 and 18 (the HPV types found most frequently in cervical cancer), with or without HPV6 and 11 (the HPV types responsible for most genital warts), are planned. If the results of these large trials support the encouraging results of the early trials, they should lead to a commercial prophylactic HPV vaccine. Implementation issues may include how to make the vaccine available in the developing world, where the majority of cervical cancer cases occur, the appropriate age of vaccination, and the role of male vaccination. Because a VLP vaccine is likely to provide type-specific protection, increasing the number of cancer-associated HPV types in the vaccine is a likely approach to broadening the protection to additional types. There will probably also be efforts to develop alternative vaccine formulations better suited to implementation in developing countries as well as attempts to develop vaccines with a therapeutic activity against established HPV infection because a combined prophylactic/therapeutic vaccine may be expected to have an even greater impact than a purely prophylactic vaccine on HPV induced disease.
Resumo:
OBJECTIVE: To compare the immunogenicity of three yellow fever vaccines from WHO-17D and Brazilian 17DD substrains (different seed-lots). METHODS: An equivalence trial was carried out involving 1,087 adults in Rio de Janeiro. Vaccines produced by Bio-Manguinhos, Fiocruz (Rio de Janeiro, Brazil) were administered following standardized procedures adapted to allow blocked randomized allocation of participants to coded vaccine types (double-blind). Neutralizing yellow fever antibody titters were compared in pre- and post-immunization serum samples. Equivalence was defined as a difference of no more than five percentage points in seroconversion rates, and ratio between Geometric Mean Titters (GMT) higher than 0.67. RESULTS: Seroconversion rates were 98% or higher among subjects previously seronegative, and 90% or more of the total cohort of vaccinees, including those previously seropositive. Differences in seroconversion ranged from -0.05% to -3.02%. The intensity of the immune response was also very similar across vaccines: 14.5 to 18.6 IU/mL. GMT ratios ranged from 0.78 to 0.93. Taking the placebo group into account, the vaccines explained 93% of seroconversion. Viremia was detected in 2.7% of vaccinated subjects from Day 3 to Day 7. CONCLUSIONS: The equivalent immunogenicity of yellow fever vaccines from the 17D and 17DD substrains was demonstrated for the first time in placebo-controlled double-blind randomized trial. The study completed the clinical validation process of a new vaccine seed-lot, provided evidence for use of alternative attenuated virus substrains in vaccine production for a major manufacturer, and for the utilization of the 17DD vaccine in other countries.
Resumo:
OBJECTIVE: To compare the reactogenicity of three yellow fever (YF) vaccines from WHO-17D and Brazilian 17DD substrains (different seed-lots) and placebo. METHODS: The study involved 1,087 adults eligible for YF vaccine in Rio de Janeiro, Brazil. Vaccines produced by Bio-Manguinhos, Fiocruz (Rio de Janeiro, Brazil) were administered ("day 0") following standardized procedures adapted to allow blinding and blocked randomization of participants to coded vaccine types. Adverse events after immunization were ascertained in an interview and in diary forms filled in by each participant. Liver enzymes were measured on days 0, 4-20 and 30 of the study. Viremia levels were measured on days 4 to 20 of follow-up. The immune response was verified through serologic tests. RESULTS: Participants were mostly young males. The seroconversion rate was above 98% among those seronegative before immunization. Compared to placebo, the excess risk of any local adverse events ranged from 0.9% to 2.5%, whereas for any systemic adverse events it ranged from 3.5% to 7.4% across vaccine groups. The excess risk of events leading to search for medical care or to interruption of work activities ranged from 2% to 4.5%. Viremia was detected in 3%-6% of vaccinees up to 10 days after vaccination. Variations in liver enzyme levels after vaccination were similar in placebo and vaccine recipients. CONCLUSIONS: The frequency of adverse events post-immunization against YF, accounting for the background occurrence of nonspecific signs and symptoms, was shown for the first time to be similar for vaccines from 17D and 17DD substrains. The data also provided evidence against viscerotropism of vaccine virus.