998 resultados para V79 CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solanum lycocarpum A. St. Hil. (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado. S. lycocarpum fruits are commonly used in traditional medicine in powder form or as folk preparations for the treatment of diabetes and obesity, as well as for controlling cholesterol levels. The aim of the present study was to chemically characterize the hydroalcoholic extract (SL) of S. lycocarpum by determination of total flavonoids and total poyphenols and quantification of steroidal alkaloids, as well as to evaluate its mutagenic and/or antimutagenic potential on V79 cells and Swiss mice using chromosomal aberrations and bone marrow micronucleus assays, respectively. Three concentrations of SL (16, 32, and 24 mu g/mL) were used for the evaluation of its mutagenic potential in V79 cells and four doses (0.25, 0.50, 1.0, and 2.0 g/kg body weight) were used for Swiss mice. In the antimutagenicity assays, the different concentrations of SL were combined with the chemotherapeutic agent doxorubicin (DXR). HPLC analysis of SL gave contents of 6.57% +/- 0.41 of solasonine and 4.60% +/- 0.40 of solamargine. Total flavonoids and polyphenols contents in SL were 0.04 and 3.60%, respectively. The results showed that not only SL exerted no mutagenic effect, but it also significantly reduced the frequency of chromosomal aberrations induced by DXR in both V79 cells and micronuclei in Swiss mice at the doses tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian `cerrado`. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 mu M) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 mu g ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 mu g ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agaricus blazei Murrill, a native mushroom in Brazil, has been widely consumed in different parts of the world due to its medicinal power. Its anticarcinogenic activity has been shown in experimental animals, and antimutagenic activity has been demonstrated only in Salmonella. In this work, the multagenic and antimutagenic activities of mushroom teas of strains AB96/07, AB96/09 and AB97/11 were evaluated in Chinese hamster V79 cells, using the comet assay and the micronucleus test. The cells were treated with three different concentrations (0.05, 0.1 and 0.15) of teas prepared from a 2.5% aqueous solution, under three different temperatures: (1) room (20-25 degreesC); (2) ice-cold (2-8 degreesC); and (3) warm (60 degreesC). The teas were applied in co-, pre- and post-treatments in combination with the mutagen methyl methanesulfonate (MMS; 1.6 x 10(-4) and 4 x 10(-4) M). The duration of the treatment was 1 h in the comet assay and 2 h in the micronucleus test. The results showed that the mushroom was not mutagenic itself. Nevertheless, the mushroom is an efficient antimutagen against the induction of micronuclei by MMS in all concentrations and preparations tested. The observed reductions in the frequencies of micronuclei ranged from 61.5 (room temperature 0.1% tea in post-treatment) to 110.3% (co-treatment with warm and ice-cold 0.15% tea). In the comet assay, the antimutagenic activity was detected only when the cells were pre-treated with the following teas: warm 0.1 and 0.15%, room temperature 0.05% and ice-cold 0.1%. The results indicate that the mushroom A. blazei extracts are antimutagenic when tested in V79 cells. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agaricus blazei Murill is a mushroom largely consumed due to its medicinal properties. Effects of aqueous extract from its lineage AB97/11 in 2 fruiting body development stages (closed and opened pileus) were evaluated on chinese hamster V79 cells using cytokinesis blocking micronucleus (CBMN) and comet assays. The cells were treated at 0.15% concentration of aqueous extract prepared at different temperatures: ice-cold (4°C), room temperature (21°C) and warm (60°C). The extracts were applied in mutagenicity and antimutagenicity protocols (simultaneous, pre-incubation and continuous). The results showed that the aqueous extracts of Agaricus blazei lineage AB97/11 obtained at the 3 temperatures and both development stages did not present mutagenic or antimutagenic effect in V79 cells either in CBMN or comet assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agaricus blazei Murrill, popularly known as the sun mushroom, is a native mushroom in SP, Brazil, that has been widely used in the treatment of cancer and many other pathologies in different parts of the world. A water-soluble protein-polysaccharide complex (1 → 6)β-D-glucan has been isolated from its fruiting body that showed immune-modulation activity. From organic extracts, linoleic acid has been isolated and determined to be the main substance with antimutagenic activity. Using both the micronucleus (MN) and comet (single cell microgel electrophoresis) assays, this study determined the genotoxic and antigenotoxic potential of A. blazei (AB) obtained from commercial sources or the following strains: a) strains AB 97/29 (young and sporulated phases); b) a mixture taken from AB 96/07, AB 96/09 and AB 97/ 11 strains; and c) commercial mushrooms from Londrina, PR and Piedade, SP, designated as AB PR and AB SP, respectively. The extracts from these mushrooms were isolated in chloroform:methanol (3:1) and used in vitro at three different concentrations. V79 cells (Chinese hamster lung cells) were exposed to the extracts under pre-, simultaneous and post-treatment conditions, combined with methyl methanesulfonate (MMS). Under the circumstances of this study, these organic extracts did not show any genotoxic or mutagenic effects, but did protect cells against the induction of micronuclei by MMS. Copyright by the Brazilian Society of Genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solanum lycocarpum St.-Hil (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado, popularly known as "fruit-of-wolf". Considering that the induction of chromosomal mutations is involved in the process of carcinogenesis, and that S. lycocatpum is often used in folk medicine, it becomes relevant to study its effect on genetic material. In this sense, the aim of present study was to determine the possible cytotoxic, genotoxic and antigenotoxic potentials of S. lycocarpum fruits glycoalkaloid extract (SL) in Chinese hamster lung fibroblasts (V79 cells). The cytotoxicity was evaluated by the colony forming assay, apoptosis and necrosis assay. Trypan blue exclusion dye method and mitotic index. Genotoxic and antigenotoxic potential were evaluated by comet and chromosomal aberrations assays. Four concentrations of SL (4, 8, 16 and 32 mu g/mL) were used for the evaluation of its genotoxic potential. The DNA damage-inducing agent methyl methanesulfonate (MMS, 221 mu g/mL) was utilized in combination with extract to evaluate a possible protective effect. The results showed that SL was cytotoxic at concentrations above 32 mu g/mL by the colony forming assay. For apoptosis and necrosis assay, the concentration of 64 mu g/mL of SL showed statistically significant increase in cell death by apoptosis and necrosis, while the concentrations of 128 and 256 mu g/mL of SL demonstrated statistically significant increase in cell death by necrosis, compared with the control group. Analysis of cell viability by Trypan blue exclusion indicated >96% viability for treatments with concentrations up to 32 mu g/mL of SL No significant differences in MI were observed between cultures treated with different concentrations of 51 (4, 8, 16 and 32 mu g/mL) alone or in combination with MMS and the negative control, indicating that these treatments were not cytotoxic. The comet and chromosomal aberrations assays revealed that SL does not display genotoxic activity. Moreover, the different concentrations of SL showed protective effect against both genomic and chromosomal damages induced by MMS. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baccharin is one of the major chemical compounds isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America and the most important botanical source of the Brazilian green propolis that has been used in alternative medicine to treat inflammation, liver disorders, and stomach ulcers. The present study was carried out in V79 cells to determine the possible genotoxic and antigenotoxic activities of baccharin utilizing comet and micronucleus assays, where 2 known mutagenic agents with different mechanisms of DNA damage were used as positive controls. The V79 cells were treated with concentrations of baccharin (0.25, 0.5, 1.0, and 2.0 mu g/mL) and for to investigate the antigenotoxicity these concentrations were associated with methyl methanesulfonate (MMS; 200 mu M-comet assay and 400 mu M-micronucleus assay) or hydrogen peroxide (H2O2; 50 mu M-comet assay and 100 mu M-micronucleus assay). Statistically significant differences in the rate of DNA damage were observed in cultures treated with the highest concentration of baccharin when compared to the control group, but this difference was not found in the micronucleus assay. The results also showed that the frequencies of DNA damage and micronuclei induced by MMS and H2O2 were significantly reduced after treatment with baccharin. The baccharin showed a chemoprevention effect and can be the chemical compound responsible for the antigenotoxicity also demonstrated by the B. dracunculifolia. The antioxidant potential of baccharin may be related to its chemoprevention activity induced against both genomic and chromosomal damages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dibenzylbutyrolactone lignan (-)-hinokinin (HK) was obtained by partial synthesis from (-)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. In view of the trypanocidal activity of HK and its potential as a lead compound for drug development, evaluation of its possible genotoxic activity is required. We have tested HK for possible genotoxicity and evaluated the compound`s effect on the activity of the clastogens doxorubicin (DXR) and methyl methanesulfonate (MMS) in the micronucleus (MN) assay with Chinese hamster lung fibroblast V79 cells. HK alone did not induce MN, at concentrations up to 128 mu M. In combined treatments, HK reduced the frequency of MN induced by MMS. With respect to DXR, HK exerted a protective effect at lower concentrations, but at higher concentrations it potentiated DXR clastogenicity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sun mushroom is the popular name for the Agaricus blazei Murill fungus, a mushroom native to south-eastern Brazil, which has been frequently used in popular medicine mainly in the form of tea to treat various ailments (stress, diabetes, etc.). In the present study, the genotoxic and/or anti-genotoxic effects ofA. blazei on mammalian cells in culture was assessed by checking the increase or reduction of micronucleus (MN) frequency and comets. The sun mushroom (lineage 99/26) was used as aqueous extracts prepared (2.5%) at three different temperatures (60, 25 and 4°C). The in vitro micronucleus (MN) test in binucleated cells and comet assay were used in V79 cells cultivated in HAM-F10+DMEM medium (1:1), supplemented with 10% of fetal bovine serum. The experiments were divided into four treatment types: 1. Negative control; 2. Positive control with MMS; 3. Treatments with the three forms of extracts (60, 25 and 4°C); and 4. Treatments with the extracts in different associations (simultaneous, pre-treatment, post-treatment and simultaneous after pre-incubation for 1 h) with MMS. None of the A. blazei extracts show genotoxic activity. In the comet assay no protecting effect was found. The results obtained in the MN test showed that the three forms of extracts used had protective activity, suggesting that the compound or active ingredients of A. blazei are always present in these extracts. The greater protective efficiency of the simultaneous treatment and simultaneous treatment with pre-incubation mixture with MMS suggests that the extracts have an antimutagenic action of the desmutagenic type. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives The study`s aims were to evaluate the antimycobacterial activity of 13 synthetic neolignan analogues and to perform structure activity relationship analysis (SAR). The cytotoxicity of the compound 2-phenoxy-1-phenylethanone (LS-2, 1) in mammalian cells, such as the acute toxicity in mice, was also evaluated. Methods The extra and intracellular antimycobacterial activity was evaluated on Mycobacterium tuberculosis H37Rv. Cytotoxicity studies were performed using V79 cells, J774 macrophages and rat hepatocytes. Additionally, the in-vivo acute toxicity was tested in mice. The SAR analysis was performed by Principal Component Analysis (PCA). Key findings Among the 13 analogues tested, LS-2 (1) was the most effective, showing promising antimycobacterial activity and very low cytotoxicity in V79 cells and in J774 macrophages, while no toxicity was observed in rat hepatocytes. The selectivity index (SI) of LS-2 (1) was 91 and the calculated LD50 was 1870 mg/kg, highlighting the very low toxicity in mice. SAR analysis showed that the highest electrophilicity and the lowest molar volume are physical-chemical characteristics important for the antimycobacterial activity of the LS-2 (1). Conclusions LS-2 (1) showed promising antimycobacterial activity and very weak cytotoxicity in cell culture, as well as an absence of toxicity in primary culture of hepatocytes. In the acute toxicity study there was an indication of absence of toxicity on murine models, in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO:Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações industriais, a AA está também presente numa grande variedade de alimentos ricos em amido e processados a temperaturas elevadas. Esta exposição através da ingestão de produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde pública e poderá implicar um risco adicional para o aparecimento de cancro. A glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o principal responsável pela carcinogenicidade da AA. Actualmente existe uma escassez de resultados relativamente aos mecanismos de genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, recorrendo-se para tal ao uso de células de mamífero como modelo. Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a AA. No âmbito deste trabalho, foi também efectuada a quantificação de aductos específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do GSH nos efeitos de citotoxicidade e clastogenicidade da AA. Para além dos estudos efetuados com células V79, procedeu-se também à determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela quantificação de aductos específicos de DNA, ambos efectuados em linfócitos estimulados, originaram resultados comparáveis aos obtidos anteriormente para as células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA mostraram que apenas esta última aumenta o nível das lesões de DNA. Outro objectivo deste trabalho, foi a identificação de possíveis associações existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA (BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, e os polimorfismos genéticos estudados, apontando para uma possível associação entre o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou combinados. Estes estudos contribuem para um melhor entendimento da genotoxicidade e carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas pela exposição a estes xenobióticos alimentares. ----------- ABSTRACT:Acrylamide (AA) has been classified as a probable human carcinogen by IARC. Besides being used in numerous industrial applications, AA is also present in a variety of starchy cooked foods. This AA exposure scenario raised concerns about risk in human health and suggests that the oral consumption of AA is an additional risk factor for cancer. A considerable number of findings strongly suggest that the reactive metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 2E1, plays a central role in AA carcinogenesis. Until now there are a scarcity of results concerning the mechanisms of genotoxicity of AA and GA in mammalian cells. In view of that, the study described in this thesis aims to unveil the genetic consequences of AA and GA exposure using mammalian cells as a model system. With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay and subsequently performed two cytogenetic end-points: chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage induced by these compounds in V79 Chinese hamster cell line. The results showed that GA was more cytotoxic and clastogenic than AA. Within the scope of this thesis the quantification of specific DNA adducts were also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA concentration and the levels of N7-GA-Gua presented a linear dose-response relationship. Further, a very good correlation between the levels of N7-GA-Gua and the extent of SCEs were observed. In order to understand the mechanisms of AA-induced toxicity, the modulation of reduced glutathione (GSH)-dependent mechanisms were studied, namely the evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is intracellularly hydrolysed to GSH and also of GSH endogenously added to culture medium,z in V79 cell line. The overall results reinforced the role of GSH in the modulation of the cytotoxic and clastogenic effects induced by AA.Complementary to the studies performed in V79 cells, SCEs, specific DNA-adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA and GA were also evaluated. Both, the frequency of SCE and the quantification of specific GA DNA adducts, produced comparable results with those obtained in V79 cell line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline comet assay, showed that GA, but not AA, increases DNA damage. Additionally, this study aimed to identify associations between DNA damage and biomarkers of susceptibility, concerning individual genetic polymorphisms involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet assay. The extent of DNA damage determined by the levels of SCEs induced by GA seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. Moreover, the results obtained from the comet assay suggested associations between DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in combination. The overall results from this study contribute to a better understanding of the genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the knowledge about the variability in individual susceptibility involved in detoxification and repair of DNA damage due to these dietary xenobiotics.