940 resultados para Utilities
Resumo:
Sustainability concerns every citizen. Housing affordability and sustainable solutions are being highlighted in research and practice in many parts of the world. This paper discusses the development of a Commuter Energy and Building Utilities System (CEBUS) in sustainable housing projects as a means of bridging the gap between current median house pricing and target affordable house pricing for low income earners. Similar scales of sustainable housing development cannot be achieved through independent application of current best practice methods in ecologically sustainable development strategies or transit oriented development master plans. This paper presents the initial stage of research on first capital and ongoing utilities and transport cost savings available from these sustainable design methods. It also outlines further research and development of a CEBUS Dynamic Simulation Model and Conceptual Framework for the Australian property development and construction industry.
Resumo:
An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008. By 2011, both the peak demand and grid supplied electricity consumption had decreased to below pre-intervention levels. This case study research explored the relationship developed between the utility, community and individual consumer from the residential customer perspective through qualitative research of 22 residential households. It is proposed that an energy utility can be highly successful at peak demand reduction by becoming a community member and a peer to residential consumers and developing the necessary trust, access, influence and partnership required to create the responsive environment to change. A peer-community approach could provide policymakers with a pathway for implementing pro-environmental behaviour for low carbon communities, as well as peak demand reduction, thereby addressing government emission targets while limiting the cost of living increases from infrastructure expenditure.
Resumo:
This paper presents the results of the laboratory model tests and the numerical studies conducted on small diameter PVC pipes, buried in geocell reinforced sand beds. The aim of the study was to evaluate the suitability of the geocell reinforcement in protecting the underground utilities and buried pipelines. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Conversely, the performance of the subgrade soil was also found to be marginally influenced by the position of the pipe, even in the presence of the relatively stiff reinforcement system. Further, experimental results were validated with 3-dimensional numerical studies using FLAC(3D) (Fast Lagrangian Analysis of Continua in 3D). A good agreement in the measured pipe stain values were observed between the experimental and numerical studies. Numerical studies revealed that the geocells distribute the stresses in the lateral direction and thus reduce the pressure on the pipe. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.
Resumo:
The desire to obtain competitive advantage is a motivator for implementing Enterprise Resource Planning (ERP) Systems (Adam & O’Doherty, 2000). However, while it is accepted that Information Technology (IT) in general may contribute to the improvement of organisational performance (Melville, Kraemer, & Gurbaxani, 2004), the nature and extent of that contribution is poorly understood (Jacobs & Bendoly, 2003; Ravichandran & Lertwongsatien, 2005). Accordingly, Henderson and Venkatraman (1993) assert that it is the application of business and IT capabilities to develop and leverage a firm’s IT resources for organisational transformation, rather than the acquired technological functionality, that secures competitive advantage for firms. Application of the Resource Based View of the firm (Wernerfelt, 1984) and Dynamic Capabilities Theory (DCT) (Teece and Pisano (1998) in particular) may yield insights into whether or not the use of Enterprise Systems enhances organisations’ core capabilities and thereby obtains competitive advantage, sustainable or otherwise (Melville et al., 2004). An operational definition of Core Capabilities that is independent of the construct of Sustained Competitive Advantage is formulated. This Study proposes and utilises an applied Dynamic Capabilities framework to facilitate the investigation of the role of Enterprise Systems. The objective of this research study is to investigate the role of Enterprise Systems in the Core Dynamic Capabilities of Asset Lifecycle Management. The Study explores the activities of Asset Lifecycle Management, the Core Dynamic Capabilities inherent in Asset Lifecycle Management and the footprint of Enterprise Systems on those Dynamic Capabilities. Additionally, the study explains the mechanisms by which Enterprise Systems sustain the Exploitability and the Renewability of those Core Dynamic Capabilities. The study finds that Enterprise Systems contribute directly to the Value, Exploitability and Renewability of Core Dynamic Capabilities and indirectly to their Inimitability and Non-substitutability. The study concludes by presenting an applied Dynamic Capabilities framework, which integrates Alter (1992)’s definition of Information Systems with Teece and Pisano (1998)’s model of Dynamic Capabilities to provide a robust diagnostic for determining the sustained value generating contributions of Enterprise Systems. These frameworks are used in the conclusions to frame the findings of the study. The conclusions go on to assert that these frameworks are free - standing and analytically generalisable, per Siggelkow (2007) and Yin (2003).
Resumo:
Equity research report
Resumo:
To what extent should public utilities regulation be expected to converge across countries? When it occurs, will it generate good outcomes? Building on the core proposition of the New Institutional Economics that similar regulations generate different outcomes depending on their fit with the underlying domestic institutions, we develop a simple model and explore its implications by examining the diffusion of local loop unbundling (LLU) regulations. We argue that: one should expect some convergence in public utility regulation but with still a significant degree of local experimentation; this process will have very different impacts of regulation.
Resumo:
View from outside the Central Utilities Building facing southwest.
Resumo:
Tunnel with air ducts running along ceiling.