998 resultados para Urothelial cells
Resumo:
OBJECTIVES: Tissue engineering methods can be applied to regenerate diseased, or congenitally missing, urinary tract tissues. Urinary tract tissue cell cultures must be established in vitro and adequate matrices, acting as cell carriers, must be developed. Although degradable and nondegradable polymer matrices offer adequate mechanical stability, they are not optimal for cell adherence and growth. To overcome this problem, extracellular matrix proteins, permitting cell adhesion and regulation of cell proliferation and differentiation, can be adsorbed to the surface-modified polymer. METHODS: In this study, nondegradable polymer films, poly(ethylene terephthalate), were used as an experimental model. Films were modified by graft polymerization of acrylic acid to subsequently allow collagen type I and III immobilization. The following adhesion, proliferation of human urothelial cells, and induction of their stratification were analyzed. RESULTS: Collagen adsorption on 0.2 microg/cm2 poly(acrylic acid)-grafted polymer films rendered the matrix apt for human urothelial cell adhesion and proliferation. Furthermore, stratification of urothelial cells was demonstrated on these surface-modified matrices. CONCLUSIONS: These results have shown that surface-modified polymer matrices can be used to act as cell carriers for cultured human urothelial cells. Such a cell-matrix construct could be applied in reparative surgery of the urinary tract.
Resumo:
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Resumo:
OBJECTIVE: To assess porcine urothelial cell cultures and the in vitro induction of urothelial stratification in long-term cultures, to study their morphological, functional and genetic behaviour, and thus provide potential autologous urothelium for tissue-engineered substitutes for demucosalized gastric or colonic tissue. MATERIALS AND METHODS: Primary cultures of porcine urothelium were established and the cells passaged thereafter. Cell specificity was confirmed by cytokeratin analysis, cell membrane stability assessed using lactate dehydrogenase leakage, cell de-differentiation by gamma-glutamyl transferase activity and genomic stability by karyotype investigations. Histology and scanning electron microscopy were performed to study the cultured cells and the stratified constructs. Furthermore, collagen matrices were tested as cell scaffolds. RESULTS: The cells were cultured for 180 days; 10 subcultures were established during this period. Stratification was induced in a culture flask and on a collagen matrix. Cytokeratins 7, 8, 17 and 18 were expressed in all cultures, and cell membranes were stable, with no evident de-differentiation. The cultures were stable in their genotype and no chromosomal aberrations were found. The histology and immunohistochemistry of the stratified porcine constructs, and cell membrane stability and cell de-differentiation, were compared with those in the human system. CONCLUSION: Pig and human urothelial cells can be cultured over a long period with no signs of senescence. Urothelial stratification can be induced in vitro. The collagen matrix seems to be an excellent scaffold, allowing cell adherence and growth.
Resumo:
In order to determine if patients with a history of previous urothelial cell carcinoma (UCC) but with current normal urinary cytology have DNA damage in urothelial cells, the single-cell gel electrophoresis (comet) assay was conducted with cells obtained by urinary bladder washings from 44 patients (28 with a history of previous UCC). Increased DNA damage was observed in cytologically normal urothelial cells of patients with a history of UCC when compared with referents with no similar history and after correcting the data for smoking status and age (P < 0.018). Increased DNA damage also correlated with the highest tumor grade, irrespective of time or course of the disease after clinical intervention (Kendall tau correlation, 0.37, P = 0.016). Moreover, aneuploidy, as assessed by DNA content ratio (DCR; 75th/25th percentile of total DNA fluorescence of 50 comets/patient) was unaltered by smoking status, but increased with UCC grade: 1.39 +/- 0.12 (median +/- 95% confidence interval; referents); 1.43 +/- 0.11 (Grade I UCC; P = 0.264, against referents); 1.49 +/- 0.16 (Grade II UCC; P = 0.057); 1.57 +/- 0.16 (Grade III UCC; P = 0.003). Micronucleated urothelial cells (MNC) were also scored on Giemsa-stained routine cytological smears and were found not to correlate with DNA damage or DCR. MNC frequencies were higher for patients with a history of UCC and/or smoking than referents with neither history, but there was no statistical difference between groups. Taken together, these results suggest that the normal-appearing urothelium of patients resected for UCC still harbor genetically unstable cells. (C) 2002 Wiley-Liss, Inc.
Resumo:
A protocol for DNA damage assessment by the single-cell gel (SCG)/comet assay in human urinary bladder washing cells was established. Modifications of the standard alkaline protocol included an increase to 2% of sodium sarcosinate in the lysis solution, a reduction in the glass-slide area for comet analysis, and a cutoff value for comet head diameter of at least 30 mum, to exclude contaminating leukocytes. Distinguishing cell populations is crucial, because significant differential migration was demonstrated for transitional and nontransitional cells, phenomena that may confound the results. When applying the modified protocol to urinary bladder cells from smokers without urinary bladder neoplasia, it was possible to detect a significant (P = 0.03) increase in DNA damage as depicted by the tail moment (6.39 +/- 3.23; mean 95% confidence interval; n = 18) when compared with nonsmokers (1.94 +/- 1.41; n = 12). No significant differences were observed between ex-smokers and current smokers regarding comet parameters. Inflammation was not a confounding factor, but DNA migration increased significantly with age in nonsmokers (r = 0.68; P = 0.014). Thus, age matching should be a concern when transitional cells are analyzed in the SCG assay. As it is well known, DNA damage may trigger genomic instability, a crucial step in carcinogenesis. Therefore, the present data directly support the classification of individuals with smoking history as patients at high risk for urinary bladder cancer.
Resumo:
Considering the high incidence of dogs with acute bacterial cystitis (BC) and the relationship among inflammation, genotoxicity, and carcinogenesis, we conducted a case-control study comparing the frequency of deoxyribonucleic acid (DNA) lesions assessed by the comet assay between disease-free animals (13 males and 13 females) and cytology-confirmed cases of acute BC (12 males and 12 females), which was mainly caused by Staphylococcus sp. (40%) and Escherichia coli (35%). The results show no increase in DNA damage in cells obtained by bladder washings and no influence of age, sex, and breed due to acute BC. In conclusion, DNA damage was seemingly not associated with the infection by specific bacteria.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.
Resumo:
Collagen is highly conserved across species and has been used extensively for tissue regeneration; however, its mechanical properties are limited. A recent advance using plastic compression of collagen gels to achieve much higher concentrations significantly increases its mechanical properties at the neo-tissue level. This controlled, cell-independent process allows the engineering of biomimetic scaffolds. We have evaluated plastic compressed collagen scaffolds seeded with human bladder smooth muscle cells inside and urothelial cells on the gel surface for potential urological applications. Bladder smooth muscle and urothelial cells were visualized using scanning electron microscopy, conventional histology and immunohistochemistry; cell viability and proliferation were also quantified for 14 days in vitro. Both cell types tested proliferated on the construct surface, forming dense cell layers after 2 weeks. However, smooth muscle cells seeded within the construct, assessed with the Alamar blue assay, showed lower proliferation. Cellular distribution within the construct was also evaluated, using confocal microscopy. After 14 days of in vitro culture, 30% of the smooth muscle cells were found on the construct surface compared to 0% at day 1. Our results provide some evidence that cell-seeded plastic compressed collagen has significant potential for bladder tissue regeneration, as these materials allow efficient cell seeding inside the construct as well as cell proliferation.
Resumo:
Tissue-engineered grafts for the urinary tract are being investigated for the potential treatment of several urologic diseases. These grafts, predominantly tubular-shaped, usually require in vitro culture prior to implantation to allow cell engraftment on initially cell-free scaffolds. We have developed a method to produce tubular-shaped collagen scaffolds based on plastic compression. Our approach produces a ready cell-seeded graft that does not need further in vitro culture prior to implantation. The tubular collagen scaffolds were in particular investigated for their structural, mechanical and biological properties. The resulting construct showed an especially high collagen density, and was characterized by favorable mechanical properties assessed by axial extension and radial dilation. Young modulus in particular was greater than non-compressed collagen tubes. Seeding densities affected proliferation rate of primary human bladder smooth muscle cells. An optimal seeding density of 10(6) cells per construct resulted in a 25-fold increase in Alamar blue-based fluorescence after 2 wk in culture. These high-density collagen gel tubes, ready seeded with smooth muscle cells could be further seeded with urothelial cells, drastically shortening the production time of graft for urinary tract regeneration.
Resumo:
Biological monitoring of early genotoxic effects in urothelial cells using the urinary micronucleus (MNu) assay is promising for early detection of cancer, such as bladder carcinoma. But many problems are encountered, the major being the poorly differential staining of cells, particularly in women having an important amount of squamous cells. We have optimized the protocol and obtained a differential staining of the cell types present in urine on 10 subjects. Following Carnoy I fixation and Papanicolaou staining, urothelial cells were blue while most squamous cells were pink. This differential staining allowed for optimization of the MNu assay on a single urine void, for both females and males. Even if our MNu means were comparable to the literature, the great variation in reported MNu results could reside in the ability of scorers to distinguish correctly between urothelial and squamous cells. When monitoring exposed populations, this erroneous distinction could largely influence the results, even more in women’s urine samples. Given a situation where exposure would not increase micronuclei frequency in vaginal squamous cells, their erroneous analysis in the MNu assay could mask an early genotoxic effect. Therefore, as transitional cell carcinoma of the bladder originates from transformed urothelial cells, restricting micronuclei analysis to urothelial cells could yield a more precise estimate of cancer risk in exposed populations. Moreover, it is hoped that the improvements proposed in this paper will allow for an easier implementation of the MNu assay in various set-ups and enhance its specificity, since MNu are considered a suitable biomarker.
Resumo:
Objective: To understand developmental characteristics of urinary bladder carcinomas (UBC) by evaluating genomic alterations and p53 protein expression in primary tumors, their recurrences, and in the morphologically normal urothelium of UBC patients. Methods: Tumors and their respective recurrences, six low-grade and five high-grade cases, provided 19 samples that were submitted to laser microdissection capture followed by high resolution comparative genomic hybridization (HR-CGH). HR-CGH profiles went through two different analyses-all tumors combined or classified according to their respective histologic grades. In a supplementary analysis, 124 primary urothelial tumors, their recurrences, and normal urothelium biopsied during the period between tumor surgical resection and recurrence, were submitted to immunohistochemical analyses of the p53 protein. During the follow-up of at least 21 patients, urinary bladder washes citologically negative for neoplastic cells were submitted to fluorescence in situ hybridization (FISH) to detect copy number alterations in centromeres 7, 17, and 9p21 region. Results and Conclusions: HR-CGH indicated high frequencies (80%) of gains in 11p12 and losses in 16p12, in line with suggestions that these chromosome regions contain genes critical for urinary bladder carcinogenesis. Within a same patient, tumors and their respective recurrences showed common genomic losses and gains, which implies that the genomic profile acquired by primary tumors was relatively stable. There were exclusive genomic alterations in low and in high grade tumors. Genes mapped in these regions should be investigated on their involvement in the urinary bladder carcinogenesis. Successive tumors from same patient did not present similar levels of protein p53 expression; however, when cases were grouped according to tumor histologic grades, p53 expression was directly proportional to tumor grades. Biopsies taken during the follow-up of patients with history of previously resected UBC revealed that 5/15 patients with no histologic alterations had more than 25% of urothelial cells expressing the p53 protein, suggesting that the apparently normal urothelium was genomically unstable. No numerical alterations of the chromosomes 7, 17, and 9p21 region were found by FISH during the periods free-of-neoplasia. Our data are informative for further studies to better understand urinary bladder urothelial carcinogenesis. © 2013 Elsevier Inc.
Resumo:
Defects in urothelial integrity resulting in leakage and activation of underlying sensory nerves are potential causative factors of bladder pain syndrome, a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. Herein, we identified the microRNA miR-199a-5p as an important regulator of intercellular junctions. On overexpression in urothelial cells, it impairs correct tight junction formation and leads to increased permeability. miR-199a-5p directly targets mRNAs encoding LIN7C, ARHGAP12, PALS1, RND1, and PVRL1 and attenuates their expression levels to a similar extent. Using laser microdissection, we showed that miR-199a-5p is predominantly expressed in bladder smooth muscle but that it is also detected in mature bladder urothelium and primary urothelial cultures. In the urothelium, its expression can be up-regulated after activation of cAMP signaling pathways. While validating miR-199a-5p targets, we delineated novel functions of LIN7C and ARHGAP12 in urothelial integrity and confirmed the essential role of PALS1 in establishing and maintaining urothelial polarity and junction assembly. The present results point to a possible link between miR-199a-5p expression and the control of urothelial permeability in bladder pain syndrome. Up-regulation of miR-199a-5p and concomitant down-regulation of its multiple targets might be detrimental to the establishment of a tight urothelial barrier, leading to chronic pain.