989 resultados para Urinary biomarkers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic physical inactivity is a major risk factor for a number of important lifestyle diseases, while inappropriate exposure to high physical demands is a risk factor for musculoskeletal injury and fatigue. Proteomic and metabolomic investigations of the physical activity continuum - extreme sedentariness to extremes in physical performance - offer increasing insight into the biological impacts of physical activity. Moreover, biomarkers, revealed in such studies, may have utility in the monitoring of metabolic and musculoskeletal health or recovery following injury. As a diagnostic matrix, urine is non-invasive to collect and it contains many biomolecules, which reflect both positive and negative adaptations to physical activity exposure. This review examines the utility and landscape of biomarkers of physical activity with particular reference to those found in urine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subsistence farmers are exposed to a range of mycotoxins. This study applied novel urinary multi-mycotoxin LC-MS/MS methods to determine multiple exposure biomarkers in the high oesophageal cancer region, Transkei, South Africa. Fifty-three female participants donated part of their maize-based evening meal and first void morning urine, which was analysed both with sample clean-up (single and multi-biomarker) and by a 'dilute-and-shoot' multi-biomarker method. Results were corrected for recovery with LOD for not detected. A single biomarker method detected fumonisin B1 (FB1) (87% incidence; mean±standard deviation 0.342±0.466 ng/mg creatinine) and deoxynivalenol (100%; mean 20.4±49.4 ng/mg creatinine) after hydrolysis with β-glucuronidase. The multi-biomarker 'dilute-and-shoot' method indicated deoxynivalenol-15-glucuronide was predominantly present. A multi-biomarker method with β-glucuronidase and immunoaffinity clean-up determined zearalenone (100%; 0.529±1.60 ng/mg creatinine), FB1 (96%; 1.52±2.17 ng/mg creatinine), α-zearalenol (92%; 0.614±1.91 ng/mg creatinine), deoxynivalenol (87%; 11.3±27.1 ng/mg creatinine), β-zearalenol (75%; 0.702±2.95 ng/mg creatinine) and ochratoxin A (98%; 0.041±0.086 ng/mg creatinine). These demonstrate the value of multi-biomarker methods in measuring exposures in populations exposed to multiple mycotoxins. This is the first finding of urinary deoxynivalenol, zearalenone, their conjugates, ochratoxin A and zearalenols in Transkei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometry-based metabolomics has previously demonstrated utility for identifying biomarkers of ionizing radiation exposure in cellular, mouse and rat in vivo radiation models. To provide a valuable link from small laboratory rodents to humans, γ-radiation-induced urinary biomarkers were investigated using a nonhuman primate total-body-irradiation model. Mass spectrometry-based metabolomics approaches were applied to determine whether biomarkers could be identified, as well as the previously discovered rodent biomarkers of γ radiation. Ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry analysis was carried out on a time course of clean-catch urine samples collected from nonhuman primates (n = 6 per cohort) exposed to sham, 1.0, 3.5, 6.5 or 8.5 Gy doses of (60)Co γ ray (∼0.55 Gy/min) ionizing radiation. By multivariate data analysis, 13 biomarkers of radiation were discovered: N-acetyltaurine, isethionic acid, taurine, xanthine, hypoxanthine, uric acid, creatine, creatinine, tyrosol sulfate, 3-hydroxytyrosol sulfate, tyramine sulfate, N-acetylserotonin sulfate, and adipic acid. N-Acetyltaurine, isethionic acid, and taurine had previously been identified in rats, and taurine and xanthine in mice after ionizing radiation exposure. Mass spectrometry-based metabolomics has thus successfully revealed and verified urinary biomarkers of ionizing radiation exposure in the nonhuman primate for the first time, which indicates possible mechanisms for ionizing radiation injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Apoptosis is a key mechanism involved in ischemic acute kidney injury (AKI), but its role in septic AKI is controversial. Biomarkers indicative of apoptosis could potentially detect developing AKI prior to its clinical diagnosis. METHODS As a part of the multicenter, observational FINNAKI study, we performed a pilot study among critically ill patients who developed AKI (n = 30) matched to critically ill patients without AKI (n = 30). We explored the urine and plasma levels of cytokeratin-18 neoepitope M30 (CK-18 M30), cell-free DNA, and heat shock protein 70 (HSP70) at intensive care unit (ICU) admission and 24h thereafter, before the clinical diagnosis of AKI defined by the Kidney Disease: Improving Global Outcomes -creatinine and urine output criteria. Furthermore, we performed a validation study in 197 consecutive patients in the FINNAKI cohort and analyzed the urine sample at ICU admission for CK-18 M30 levels. RESULTS In the pilot study, the urine or plasma levels of measured biomarkers at ICU admission, at 24h, or their maximum value did not differ significantly between AKI and non-AKI patients. Among 20 AKI patients without severe sepsis, the urine CK-18 M30 levels were significantly higher at 24h (median 116.0, IQR [32.3-233.0] U/L) than among those 20 patients who did not develop AKI (46.0 [0.0-54.0] U/L), P = 0.020. Neither urine cell-free DNA nor HSP70 levels significantly differed between AKI and non-AKI patients regardless of the presence of severe sepsis. In the validation study, urine CK-18 M30 level at ICU admission was not significantly higher among patients developing AKI compared to non-AKI patients regardless of the presence of severe sepsis or CKD. CONCLUSIONS Our findings do not support that apoptosis detected with CK-18 M30 level would be useful in assessing the development of AKI in the critically ill. Urine HSP or cell-free DNA levels did not differ between AKI and non-AKI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVolH), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 mL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 90 mL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 . 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 mg mL21 and the LOQ from 0.00023 to 0.13 mg mL21. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n=3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVolHMEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aims to investigate the dose dependent effects of consuming diets enriched in flavonoid-rich and flavonoid-poor fruits and vegetables on the urine metabolome of adults who had a C1.5 fold increased risk of cardiovascular diseases. A single-blind, dose-dependent, parallel randomized controlled dietary intervention was conducted where volunteers (n = 126) were randomly assigned to one of three diets: high flavonoid diet, low flavonoid diet or habitual diet as a control for 18 weeks. High resolution LC– MS untargeted metabolomics with minimal sample cleanup was performed using an Orbitrap mass spectrometer. Putative biomarkers which characterize diets with high and low flavonoid content were selected by state-of-the-art data analysis strategies and identified by HR-MS and HR-MS/MS assays. Discrimination between diets was observed by application of two linear mixedmodels: one including a diet-time interaction effect and the second containing only a time effect. Valerolactones, phenolic acids and their derivatives were among sixteen biomarkers related to the high flavonoid dietary exposure. Four biomarkers related to the low flavonoid diet belonged to the family of phenolic acids. For the first time abscisic acid glucuronide was reported as a biomarker after a dietary intake, however its origins have to be examined by future hypothesis driven experiments using a more targeted approach. This metabolomic analysis has identified a number of dose dependent urinary biomarkers (i.e. proline betaine or iberin-N-acetyl cysteine), which can be used in future observation and intervention studies to assess flavonoids and nonflavonoid phenolic intakes and compliance to fruit and vegetable intervention.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Radiation metabolomics has aided in the identification of a number of biomarkers in cells and mice by ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and in rats by gas chromatography-coupled mass spectrometry (GCMS). These markers have been shown to be both dose- and time-dependent. Here UPLC-ESI-QTOFMS was used to analyze rat urine samples taken from 12 rats over 7 days; they were either sham-irradiated or γ-irradiated with 3 Gy after 4 days of metabolic cage acclimatization. Using multivariate data analysis, nine urinary biomarkers of γ radiation in rats were identified, including a novel mammalian metabolite, N-acetyltaurine. These upregulated urinary biomarkers were confirmed through tandem mass spectrometry and comparisons with authentic standards. They include thymidine, 2'-deoxyuridine, 2'deoxyxanthosine, N(1)-acetylspermidine, N-acetylglucosamine/galactosamine-6-sulfate, N-acetyltaurine, N-hexanoylglycine, taurine and, tentatively, isethionic acid. Of these metabolites, 2'-deoxyuridine and thymidine were previously identified in the rat by GCMS (observed as uridine and thymine) and in the mouse by UPLC-ESI-QTOFMS. 2'Deoxyxanthosine, taurine and N-hexanoylglycine were also seen in the mouse by UPLC-ESI-QTOFMS. These are now unequivocal cross-species biomarkers for ionizing radiation exposure. Downregulated biomarkers were shown to be related to food deprivation and starvation mechanisms. The UPLC-ESI-QTOFMS approach has aided in the advance for finding common biomarkers of ionizing radiation exposure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arsenic has been classified as a human carcinogen based on epidemiological data however the mechanism of its carcinogenicity is still unclear. Urinary biomarkers for chronic arsenic exposure would be valuable as an early warning indicator for timely interventions. In this study, young female C57BI/6J mice were given drinking water containing 0, 100, 250 and 500 mug As-v/L as sodium arsenate ad libitum for 12 months. Urine was collected bimonthly for urinary arsenic methylation assay and porphyrin analysis. All detectable arsenic species showed strong linear correlation with administered dosage and the arsenic methylation patterns were similar in all three treatment groups. No significant changes of methylation patterns were observed over time for either the control or test groups. Urinary coproporphyrin III was significantly increased in the 8th month in 250 and 500 mug/L groups and remained significantly dose-related after 10 and 12 months. Coproporphyrin I also showed a significant dose-response relationship after 12 months. Our results confirm that urinary arsenic is a useful biomarker for internal dose. The alteration of porphyrin profile suggests that arsenic can affect the heme metabolism and this may occur prior to the onset of arsenic induced carcinogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of cigarette smoking and exposure to dietary cadmium (Cd) and lead (Pb) on urinary biomarkers of renal function and phenotypic variability of cytochrome P450 2A6 (CYP2A6) were investigated in a group of 96 healthy Thai men with mean age of 36.7 year (19-57 years). In non-smokers, Cd burden increased with age (r = 0.47, P < 0.001). In current smokers, Cd burden increased with both age (r = 0.45, P = 0.01) and number of cigarettes smoked per day (r = 0.32, P = 0.05). Cd-linked renal tubular dysfunction was seen in both smokers and non-smokers, but Pb-linked glomerular dysfunction was seen in smokers only, possibly due to more recent exposure to high levels of Cd and Pb, as reflected by 30-50% higher serum Cd and Pb levels in smokers than non-smokers (P < 0.05). Exposure to dietary Cd and Pb appeared to be associated with mild tubular dysfunction whereas dietary exposure plus cigarette smoking was associated with tubular plus glomerular dysfunction. Hepatic CYP2A6 activity in non-smokers showed a positive association with Cd burden (adjusted P = 0.38, P = 0.006), but it showed an inverse correlation with Pb (adjusted beta = -0.29, P = 0.003), suggesting opposing effects of Cd and Pb on hepatic CYP2A6 phenotype. In contrast, CYP2A6 activity in current smokers did not correlate with Cd or Pb, but it showed a positive correlation with serum ferritin levels (r = 0.45, P = 0.01). These finding suggest that Pb concentrations in the liver probably were too low to inhibit hepatic synthesis of heme and CYP2A6 and that the concurrent induction of hepatic CYP2A6 and ferritin was probably due to cigarette smoke constituents other than the Cd and Pb. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Painful bladder syndrome/interstitial cystitis (PBS/IC) is a chronic urinary bladder disorder of unknown etiology characterized by symptoms of bladder pain and urinary frequency. PBS/IC is a chronic disease in which drug therapy has not led to significant success over the course of time. If the symptoms of PBS/IC are refractory to standard treatments, a possible cure might demand surgical intervention involving cystectomy. The eventual autoimmune etiology in mind, immunosuppressive drug therapy with cyclosporine A (CyA) was started to patients with refractory PBS/IC. CyA is a potent anti-inflammatory drug, a calcineurin inhibitor which inhibits T lymphocyte IL-2 produc-tion. T cells are present in abundance in inflammation of the bladder in PBS/IC. On the basis of a pilot, short-term study with CyA on PBS/IC, use of CyA was continued empirically over the long term. We conducted a prospective, randomized, six-month study in 64 patients comparing the effect of CyA with the FDA approved treatment, pentosan polysulfate sodium (PPS). We measured the drug effect on patient s symptoms, the potassium sensitivity test, and on urinary biomarkers. We further tested the impact of CyA, PPS, DMSO and BCG therapy on a health-related quality of life questionnaire and evaluated the response rate to treatment with these therapies. Long-term use of CyA was safe and effective in PBS/IC patients. The good clinical effect matured individually during the years in which CyA was continued. Cessation of medication led to the reappearance of symptoms, and restarting CyA to renewed alleviation, so that CyA was administered as continuous medication. The response rate to CyA increased during the study period, comprising 75% of CyA patients at six months. 19% of patients responded to PPS therapy. Adverse effects were more common in the CyA group, underlining the importance of monitoring the drug safety and appropriate titration of the dose. The potassium sensitivity test is positive in the majority of PBS/IC patients. Successful therapy of PBS/IC can alter nerve sensitivity to external potassium. This effect was seen more often after CyA therapy. Successful treatment of PBS/IC with CyA resulted to decreasing urinary levels of EGF. IL-6 levels in urine were higher among older patient with a longer history of PBS/IC. In these patients, reduced levels of urinary IL-6 were measured after CyA therapy. Patients who experience the best treatment response have improved quality of life according to the post-treatment health-related quality of life (HRQOL) questionnaire. CyA had more impact on the ma-jority of the aspects of QoL than PPS. Despite DMSO therapy being more successful than BCG in the count of responders, DMSO and BCG had equal effects on the HRQOL questionnaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sensitive and specific urinary biomarkers can improve patient outcomes in many diseases through informing early diagnosis. Unfortunately, to date, the accuracy and translation of diagnostic urinary biomarkers into clinical practice has been disappointing. We believe this may be due to inappropriate standardization of diagnostic urinary biomarkers. Our objective was therefore to characterize the effects of standardizing urinary levels of IL-6, IL-8, and VEGF using the commonly applied standards namely urinary creatinine, osmolarity and protein. First, we report results based on the biomarker levels measured in 120 hematuric patients, 80 with pathologically confirmed bladder cancer, 27 with confounding pathologies and 13 in whom no underlying cause for their hematuria was identified, designated “no diagnosis”. Protein levels were related to final diagnostic categories (p = 0.022, ANOVA). Osmolarity (mean = 529 mOsm; median = 528 mOsm) was normally distributed, while creatinine (mean = 10163 µmol/l, median = 9350 µmol/l) and protein (0.3297, 0.1155 mg/ml) distributions were not. When we compared AUROCs for IL-6, IL-8 and VEGF levels, we found that protein standardized levels consistently resulted in the lowest AUROCs. The latter suggests that protein standardization attenuates the “true” differences in biomarker levels across controls and bladder cancer samples. Second, in 72 hematuric patients; 48 bladder cancer and 24 controls, in whom urine samples had been collected on recruitment and at follow-up (median = 11 (1 to 20 months)), we demonstrate that protein levels were approximately 24% lower at follow-up (Bland Altman plots). There was an association between differences in individual biomarkers and differences in protein levels over time, particularly in control patients.