148 resultados para Urethra stricture
Resumo:
Purpose: We evaluated the somatic and autonomic innervation of the pelvic floor and rhabdosphincter before and after nerve sparing radical retropubic prostatectomy using neurophysiological tests and correlated findings with clinical parameters and urinary continence. Materials and Methods: From February 2003 to October 2005, 46 patients with prostate cancer were enrolled in a controlled, prospective study. Patients were evaluated before and 6 months after nerve sparing radical retropubic prostatectomy using the UCLA-PCI urinary function domain and neurophysiological tests, including somatosensory evoked potential, and the pudendo-urethral, pudendo-anal and urethro-anal reflexes. Clinical parameters and urinary continence were correlated with afferent and efferent innervation of the membranous urethra and pelvic floor. We used strict criteria to define urinary continence as complete dryness with no leakage at all, not requiring any pads or diapers and with a UCLA-PCI score of 500. Patients with a sporadic drop of leakage, requiring up to 1 pad daily, were defined as having occasional urinary leakage. Results: Two patients were excluded from study due to urethral stricture postoperatively. We evaluated 44 patients within 6 months after surgery. The pudendo-anal and pudendo-urethral reflexes were unchanged postoperatively (p = 0.93 and 0.09, respectively), demonstrating that afferent and efferent pudendal innervation to this pelvic region was not affected by the surgery. Autonomic afferent denervation of the membranous urethral mucosa was found in 34 patients (77.3%), as demonstrated by a postoperative increase in the urethro-anal reflex sensory threshold and urethro-anal reflex latency (p <0.001 and 0.0007, respectively). Six of the 44 patients used pads. One patient with more severe leakage required 3 pads daily and 23 showed urinary leakage, including 5 who needed 1 pad per day and 18 who did not wear pads. Afferent autonomic denervation at the membranous urethral mucosa was found in 91.7% of patients with urinary leakage. Of 10 patients with preserved urethro-anal reflex latency 80% were continent. Conclusions: Sensory and motor pudendal innervation to this specific pelvic region did not change after nerve sparing radical retropubic prostatectomy. Significant autonomic afferent denervation of the membranous urethral mucosa was present in most patients postoperatively. Impaired membranous urethral sensitivity seemed to be associated with urinary incontinence, particularly in patients with occasional urinary leakage. Damage to the afferent autonomic innervation may have a role in the continence mechanism after nerve sparing radical retropubic prostatectomy.
Resumo:
"Con la implementación estandarizada de la ecografía uretral se pretende tener un efecto directo en el diagnóstico oportuno, no invasivo y sin complicaciones inherentes a la instrumentación del tracto urinario bajo en los pacientes que padecen de estenosis uretral; que finalmente redundará en disminución de costos a corto y largo plazo gracias a la eliminación de estudios innecesarios y procedimientos terapéuticos infructuosos, beneficiando al paciente y al sistema de salud vigente en nuestro medio. Los sujetos con estenosis uretrales complejas podrían ser diagnosticados de manera rápida, sencilla y minimamente invasiva sin importar la localización de la anomalía y su complejidad". (Extracto de la introducción)
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We made a retrospective analysis of the efficacy and complication rate of 268 esophageal dilatation procedures performed under fluoroscopic control using the fiber-optic endoscope in 45 children with esophageal stricture. Antegrade and retrograde stricture dilatation was performed under general anesthetic, mainly as an outpatient procedure. Thirty-six children had an esophageal stricture following tracheoesophageal fistula and/or esophageal atresia repair, and nine children had severe corrosive stricture of the esophagus following lye ingestion. The procedure was well tolerated and effective. © 1992 Raven Press, Ltd., New York.
Resumo:
Isolated interstitial ("pacemaker") cells from rabbit urethra were examined using the perforated-patch technique. Under voltage clamp at -60 mV, these cells fired large spontaneous transient inward currents (STICs), averaging -860 pA and >1 s in duration, which could account for urethral pacemaker activity. Spontaneous transient outward currents (STOCs) were also observed and fell into two categories, "fast" (1 s in duration). The latter were coupled to STICs, suggesting that they shared the same mechanism, while the former occurred independently at faster rates. All of these currents were abolished by cyclopiazonic acid, caffeine, or ryanodine, suggesting that they were activated by Ca(2+) release. When D-myo-inositol 1,4,5-trisphosphate (IP(3))-sensitive stores were blocked with 2-aminoethoxydiphenyl borate, the STICs and slow STOCs were abolished, but the fast STOCs remained. In contrast, the fast STOCs were more nifedipine sensitive than the STICs or the slow STOCs. These results suggest that while fast STOCs are mediated by a mechanism similar to STOCs in smooth muscle, STICs and slow STOCs are driven by IP(3). These results support the hypothesis that pacemaker activity in the urethra is driven by the IP(3)-sensitive store. PMID: 11287348 [PubMed - indexed for MEDLINE]
Resumo:
The perforated-patch technique was used to measure membrane currents in smooth muscle cells from sheep urethra. Depolarizing pulses evoked large transient outward currents and several components of sustained current. The transient current and a component of sustained current were blocked by iberiotoxin, penitrem A, and nifedipine but were unaffected by apamin or 4-aminopyridine, suggesting that they were mediated by large-conductance Ca(2+)-activated K(+) (BK) channels. When the BK current was blocked by exposure to penitrem A (100 nM) and Ca(2+)-free bath solution, there remained a voltage-sensitive K(+) current that was moderately sensitive to blockade with tetraethylammonium (TEA; half-maximal effective dose = 3.0 +/- 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increased the spike amplitude and plateau potential in slow waves evoked in single cells, whereas addition of TEA (10 mM) further increased the plateau potential and duration. In conclusion, both Ca(2+)-activated and voltage-dependent K(+) currents were found in urethral myocytes. Both of these currents are capable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.
Resumo:
1. Isolated sheep urethral cells were studied using the perforated patch clamp technique (T = 37 degrees C). Depolarizing steps ranging from -40 to -10 mV evoked an inward current that peaked within 10 ms and a slower inward current. Stepping back to the holding potential of -80 mV evoked large inward tail currents. All three currents were abolished by nifedipine (1 microM). Substitution of external Ca2+ with Ba2+ resulted in potentiation of the fast inward current and blockade of the slow current and tails. 2. Changing the chloride equilibrium potential (ECl) from 0 to +27 mV shifted the reversal potential of the tail currents from 1 +/- 1 to 27 +/- 1 mV (number of cells, n = 5). Chloride channel blockers, niflumic acid (10 microM) and anthracene-9-carboxylic acid (9AC, 1 mM), reduced the slow current and tails suggesting that these were Ca(2+)-activated Cl- currents, ICl(Ca). 4. Caffeine (10 mM) induced currents that reversed at ECl and were blocked by niflumic acid (10 microM). 5. In current clamp mode, some cells developed spontaneous transient depolarizations (STDs) and action potentials. Short exposure to nifedipine blocked the action potentials and unmasked STDs. In contrast, 9AC and niflumic acid reduced the amplitude of the STDs and blocked the action potentials. 6. In conclusion, these cells have both L-type ICa and ICl(Ca). The former appears to be responsible for the upstroke of the action potential, while the latter may act as a pacemaker current.
Resumo:
OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]
Resumo:
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations
Resumo:
1. Collagenase dispersal of strips of rabbit urethra yielded, in addition to normal spindle-shaped smooth muscle cells, a small proportion of branched cells which resembled the interstitial cells of Cajal dispersed from canine colon. These were clearly distinguishable from smooth muscle in their appearance under the phase-contrast microscope, their immunohistochemistry and their ultrastructure. They had abundant vimentin filaments but no myosin, a discontinuous basal lamina, sparse rough endoplasmic reticulum, many mitochondria and a well-developed smooth endoplasmic reticulum. 2. Interstitial cells were non-contractile but exhibited regular spontaneous depolarisations in current clamp. These could be increased in frequency by noradrenaline and blocked by perfusion with calcium-free solution. In voltage clamp they showed abundant calcium-activated chloride current and spontaneous transient inward currents which could be blocked by chloride channel blockers. 3. The majority of smooth muscle cells were vigorously contractile when stimulated but did not show spontaneous electrical activity in current clamp. In voltage clamp, smooth muscle cells showed very little calcium-activated chloride current. 4. We conclude that there are specialised pacemaking cells in the rabbit urethra that may be responsible for initiating the slow waves recorded from smooth muscle cells in the intact syncitium.
Resumo:
Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit regular Ca2+ oscillations that are associated with spontaneous transient inward currents (STICs) recorded under voltage clamp. Their frequency is known to be very sensitive to external Ca2+ concentration but the mechanism of this has yet to be elucidated. In the present study experiments were performed to assess the role of Na+-Ca2+ exchange (NCX) in this process. Membrane currents were recorded using the patch clamp technique and measurements of intracellular Ca2+ were made using fast confocal microscopy. When reverse mode NCX was enhanced by decreasing the external Na+ concentration [Na+]o from 130 to 13 mM, the frequency of global Ca2+ oscillations and STICs increased. Conversely, inhibition of reverse mode NCX by KB-R7943 and SEA0400 decreased the frequency of Ca2+ oscillations and STICs. Application of caffeine (10 mM) and noradrenaline (10 microM) induced transient Ca2+-activated chloride currents (I(ClCa)) at -60 mV due to release of Ca2+ from ryanodine- and inositol trisphosphate (IP3)-sensitive Ca2+ stores, respectively, but these responses were not blocked by KB-R7943 or SEA0400 suggesting that neither drug blocked Ca2+-activated chloride channels or Ca2+ release from stores. Intact strips of rabbit urethra smooth muscle develop spontaneous myogenic tone. This tone was relaxed by application of SEA0400 in a concentration-dependent fashion. Finally, single cell RT-PCR experiments revealed that isolated ICC from the rabbit urethra only express the type 3 isoform of the Na+-Ca2+ exchanger (NCX3). These results suggest that frequency of spontaneous activity in urethral ICC can be modulated by Ca2+ entry via reverse NCX.
Resumo:
Measurements were made (using fast confocal microscopy) of intracellular Ca2+ levels in fluo-4 loaded interstitial cells isolated from the rabbit urethra. These cells exhibited regular Ca2+ oscillations which were associated with spontaneous transient inward currents recorded under voltage clamp. Interference with D-myo-inositol 1,4,5-trisphosphate (IP3) induced Ca2+ release using 100 microm 2-aminoethoxydiphenyl borate, and the phospholipase C (PLC) inhibitors 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate and U73122 decreased the amplitude of spontaneous oscillations but did not abolish them. However, oscillations were abolished when ryanodine receptors were blocked with tetracaine or ryanodine. Oscillations ceased in the absence of external Ca2+, and frequency was directly proportional to the external Ca2+ concentration. Frequency of Ca2+ oscillation was reduced by SKF-96365, but not by nifedipine. Lanthanum and cadmium completely blocked oscillations. These results suggest that Ca2+ oscillations in isolated rabbit urethral interstitial cells are initiated by Ca2+ release from ryanodine-sensitive intracellular stores, that oscillation frequency is very sensitive to the external Ca2+ concentration and that conversion of the primary oscillation to a propagated Ca2+ wave depends upon IP3-induced Ca2+ release.