935 resultados para Urea
Resumo:
The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
Homogeneous precipitation from solution by hydrolysis of urea at elevated temperatures (T=120 degrees C) yields novel ammonia-intercalated alpha-type hydroxide phases of the formula M(OH)(x)(NH3)(0.4)(H2O)(y)(NO3)(2-x) where x=2, y=0.68 for M=Ni and x=1.85, y=0 for M=Co. These triple-layered hexagonal phases (a=3.08+/-0.01 Angstrom, c=21.7+/-0.05 Angstrom) are more crystalline than similar phases obtained by chemical precipitation or electrosynthesis. This method can be adapted as a convenient chemical route to the bulk synthesis of alpha-hydroxides.
Resumo:
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.
Resumo:
Direct nitrogen (N) losses from pastures contribute to the poor nitrogen use efficiency of the dairy industry, though the exact fate of applied N and the processes involved are largely unknown. Nitrification inhibitors such as DMPP can potentially increase fertilizer N use efficiency (NUE), though few studies globally have examined the effectiveness of DMPP coated urea in pastures. This study quantified the NUE of DMPP combined with reduced application rates, and the effect on N dynamics and plant–soil interactions over an annual ryegrass/kikuyu rotation in Queensland, Australia. Labeled 15N urea and DMPP was applied over 7 winter applications at standard farmer (45 kg N ha−1) and half (23 kg N ha−1) rates. Fertilizer recoveries and NUE were calculated over 13 harvests, and the contribution of fertilizer and soil N estimated. Up to 85% of the annual N harvested was from soil organic matter. DMPP at the lower rate increased annual yields by 31% compared to the equivalent urea treatment with no difference to the high N rates. Almost 40% of the N added at the conventional fertilizer application rate as urea was lost to the environment; 80 kg N ha−1 higher than the low DMPP. Combining the nitrification inhibitor DMPP with reduced fertilizer application rates shows substantial potential to reduce N losses to the environment while sustaining productivity in subtropical dairy pastures.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The C-m(urea)/C-m(GdmCl) ratio (where C-m is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide crosslinked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74') and (13'-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol-disulfide exchange.
Resumo:
The analogy between N-H center dot center dot center dot O and C-H center dot center dot center dot O intermolecular interactions is studied with variable temperature (180-100 K) single crystal X-ray diffraction analysis.5,5-Diethylbarbituric acid (barbital) forms isostructural molecular complexes (co-crystals) with urea (1) and acetamide (2) that respectively contain these analogous interactions.The behaviour of these two interactions as a function of temperature is very similar. This indicates that the C-H center dot center dot center dot O bond in barbital acetamide plays a similar chemical and structural role as does the N-H center dot center dot center dot O bond in barbital urea. The close relationship between these interactions and their comparable nature is further adduced from the formation of a ternary solid solution (3) of barbital, urea and acetamide. The fact that the C-H center dot center dot center dot O interaction in barbital acetamide is weaker than the N-H center dot center dot center dot O interaction in barbital urea is shown by the fact that acetamide is under expressed and urea is over expressed with respect to the quantities of these substances present in solution prior to crystallization of these ternary crystals.
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.
Resumo:
The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
The effect of thiocarbamates (S-ethyldipropylthiocarbamate and diallate), substituted ureas (monuron and diuron), and uracils (bromacil and terbacil) on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. The uptake of [1-14C]acetate by leaf disks was inhibited by the thiocarbamates and marginally by the substituted ureas, but not by the uracil herbicides. The uptake of [methyl-14C]choline was inhibited to a lesser extent by thiocarbamates, while the other herbicides showed a slight stimulation. The thiocarbamates almost completely inhibited uptake of [32P]orthophosphate at 1.0 mM concentration, while diuron and terbacil showed significant inhibition. [1-14C]Acetate incorporation into lipids was inhibited only by diallate. [methyl-14C]Choline incorporation into the choline phosphoglycerides was inhibited by diallate, diuron, and bromacil. The incorporation of [32P]orthophosphate into phospholipids was substantially inhibited (over 90% at 1.0 mM) by the thiocarbamates, but not by the other herbicides. [35S]Sulfate incorporation into sulfoquinovosyl diglycerides was markedly inhibited only by the thiocarbamates. Fatty acid synthesis by isolated chloroplasts was inhibited 40–85% by thiocarbamates, substituted ureas, and bromacil, but not by terbacil. The inhibitory effect of the urea derivatives was reversible, but that of thiocarbamates was irreversible. sn-Glycerol-3-phosphate acyltransferase(s) of the chloroplast and microsomal fractions were profoundly inhibited by thiocarbamates, but not by the other two groups of herbicides. Phosphatidic acid phosphatase was insensitive to all the herbicides tested.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.