994 resultados para Urbanization - industrial recycling
Resumo:
Não disponível
Resumo:
A comienzos del siglo XX, Detroit era una ciudad dinámica en pleno desarrollo. Pronto se convirtió en la cuarta ciudad de Estados Unidos, la capital de la naciente industria automovilística. El crecimiento se prolongó hasta finales de los años 50, cuando, a pesar del auge económico de Estados Unidos y de su área metropolitana, Detroit comenzó a mostrar los primeros signos de estancamiento. La crisis se ha prolongado hasta hoy, cuando Detroit constituye el paradigma de la ciudad industrial en declive. Estas dos imágenes contrapuestas, el auge y la crisis, no parecen explicar por sí mismas las causas de la intensidad y persistencia del declive de Detroit. Analizar las interacciones entre crecimiento económico, políticas públicas locales y desarrollo urbano a lo largo del tiempo permitirá subrayar las continuidades y comprender en qué medida el declive de Detroit ancla sus raíces en el modelo planteado durante la etapa de auge.
Resumo:
River has long been recognized as one of humanity’s most important natural resources. It is one of the most important of all the natural resources necessary to ensure human health and civilization. A close association between cities and water is inherent since the history of civilization and in fact, many urban cities in Malaysia are located close to river areas. The last two decades shown Malaysia has shifted development strategy from agricultural based to industrialization, and manufacturing industries have become the economy’s main source for the country until now. This transformation in 18th century is clearly shown that rapid urbanization, industrial and intensive agricultural activities, as well as wide-spread land development, have contributed to extensive changing of river functions for economy, national development and environment. In particular, river roles are become less significance for human life and river function limited only for transportation purposes only. So, viewed historically, waterfront development in Malaysia have undergone cycles of change over the decades and the latest in this pattern to more public purposes such as recreational and mixed used development. This paper aims to identify a transition of waterfront development in Malaysia from history time to modernization era and it would give a significance contribution for the research is currently on going.
Resumo:
Ce travail a pour objet le found footage, analysé en tant que pratique de recyclage culturel et comme important mouvement cinématographique de notre époque. L’étude trace d’abord un parallèle entre la fabrication du film d’images trouvées et le processus de recyclage industriel. Ensuite, le travail aborde les influences artistiques de ce mouvement du cinéma expérimental initié dans les années 1960, qui s’intensifie de plus en plus depuis l’avènement des dernières technologies numériques. En dernier lieu, l’étude propose une mise au point sur le found footage à l’ère des technologies numériques, en analysant les causes et conséquences de la (re)montée du mouvement, et en tenant compte de sa présence qui se multiplie sur l’Internet, par le biais du mashup.
Resumo:
The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
A presente dissertação constitui o culminar do Mestrado Integrado em Arquitetura e Urbanismo, da Universidade Fernando Pessoa – Porto. Tem como objeto de estudo a indústria em Território de Urbanização Difusa, sendo o objetivo maior a sua compreensão através, principalmente, da relação entre a dispersão industrial e as diretrizes de ocupação determinadas pelos planos de ordenamento do território, no contexto do concelho. Com este intuito foram analisadas quatro zonas que abrangem parte das freguesias de Gandra, Rebordosa, Lordelo, Vilela, Sobrosa e Duas Igrejas, localizadas no noroeste do concelho de Paredes, as quais se observaram num período cronológico delimitado entre 1947 e 2011. Trata-se de um território de grande complexidade onde existe uma multifuncionalidade de espaços. Caracteriza-se, fundamentalmente, por uma ocupação difusa/dispersa, tendo como suporte a rede de estradas e caminhos públicos em que a atividade industrial predomina nas mais diversas dimensões, desde as zonas industriais aquela inserida nos aglomerados residenciais de cariz familiar. Esta dispersão intensificou-se ao longo do séc. XX, com a fixação dispersa das indústrias que promoveram o desenvolvimento de um modelo de economia familiar que se reflete no território. A implementação do Planeamento formal, em finais desse século, virá estabelecer regras que ainda assim parecem insuficientes para controlar os aspetos mais negativos das opções individuais pré-plano. Na verdade, o atual modelo de implantação industrial levanta muitas preocupações no que concerne à preservação das estruturas “verdes”, podendo vir a comprometer, no futuro, a sustentabilidade ambiental e ecológica deste território. Será com algumas breves reflexões a este propósito, após repassar as questões principais do trabalho, que o terminaremos.
Resumo:
The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible
Resumo:
Includes bibliography
Resumo:
At head of cover title: Housing research.
Resumo:
Increased levels of polybrominated diphenyl ethers (PBDEs) can occur particularly in dust and soil surrounding facilities that recycle products containing PBDEs. This may be the source of increased exposure for nearby workers and residents. To investigate, we measured PBDE levels in soil, office dust and blood of workers at the closest workplace (i.e. within 100m) to a large automotive shredding and metal recycling facility in Brisbane, Australia. The workplace investigated in this study was independent of the automotive shredding facility and was one of approximately 50 businesses of varying types within a relatively large commercial/industrial area surrounding the recycling facility. Concentrations of PBDEs in soils were at least an order of magnitude greater than background levels in the area. Congener profiles were dominated by larger molecular weight congeners; in particular BDE-209. This reflected the profile in outdoor air samples previously collected at this site. Biomonitoring data from blood serum indicated no differential exposure for workers near the recycling facility compared to a reference group of office workers, also in Brisbane. Unlike air, indoor dust and soil sample profiles, serum samples from both worker groups were dominated by congeners BDE-47, BDE-153, BDE-99, BDE-100 and BDE-183 and was similar to the profile previously reported in the general Australian population. Estimated exposures for workers near the industrial point source suggested indoor workers had significantly higher exposure than outdoor workers due to their exposure to indoor dust rather than soil. However, no relationship was observed between blood PBDE levels and different roles and activity patterns of workers on-site. These comparisons of PBDE levels in serum provide additional insight into the inter-individual variability within Australia. Results also indicate congener patterns in the workplace environment did not match blood profiles of workers. This was attributed to the relatively high background exposures for the general Australian population via dietary intake and the home environment.
Resumo:
[EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.
Resumo:
The interactions among industrial development, land use/cover change (LUCC), and environmental effects in Changshu in the eastern coastal China were analyzed using high-resolution Landsat TM data in 1990, 1995, 2000, and 2006, socio-economic data and water environmental quality monitoring data from research institutes and governmental departments. Three phases of industrial development in Changshu were examined (i.e., the three periods of 1990 to 1995, 1995 to 2000, and 2000 to 2006). Besides industrial development and rapid urbanization, land use/cover in Changshu had changed drastically from 1990 to 2006. This change was characterized by major replacements of farmland by urban and rural settlements, artificial ponds, forested and constructed land. Industrialization, urbanization, agricultural structure adjustment, and rural housing construction were the major socio-economic driving forces of LUCC in Changshu. In addition, the annual value of ecosystem services in Changshu decreased slightly during 1990-2000, but increased significantly during 2000-2006. Nevertheless, the local environmental quality in Changshu, especially in rural areas, has not yet been improved significantly. Thus, this paper suggests an increased attention to fully realize the role of land supply in adjustment of environment-friendly industrial structure and urban-rural spatial restructuring, and translating the land management and environmental protection policies into an optimized industrial distribution and land-use pattern.
Resumo:
Absorption heat transformers are thermodynamic systems which are capable of recycling industrial waste heat energy by increasing its temperature. Triple stage heat transformers (TAHTs) can increase the temperature of this waste heat by up to approximately 145˚C. The principle factors influencing the thermodynamic performance of a TAHT and general points of operating optima were identified using a multivariate statistical analysis, prior to using heat exchange network modelling techniques to dissect the design of the TAHT and systematically reassemble it in order to minimise internal exergy destruction within the unit. This enabled first and second law efficiency improvements of up to 18.8% and 31.5% respectively to be achieved compared to conventional TAHT designs. The economic feasibility of such a thermodynamically optimised cycle was investigated by applying it to an oil refinery in Ireland, demonstrating that in general the capital cost of a TAHT makes it difficult to achieve acceptable rates of return. Decreasing the TAHT's capital cost may be achieved by redesigning its individual pieces of equipment and reducing their size. The potential benefits of using a bubble column absorber were therefore investigated in this thesis. An experimental bubble column was constructed and used to track the collapse of steam bubbles being absorbed into a hotter lithium bromide salt solution. Extremely high mass transfer coefficients of approximately 0.0012m/s were observed, showing significant improvements over previously investigated absorbers. Two separate models were developed, namely a combined heat and mass transfer model describing the rate of collapse of the bubbles, and a stochastic model describing the hydrodynamic motion of the collapsing vapour bubbles taking into consideration random fluctuations observed in the experimental data. Both models showed good agreement with the collected data, and demonstrated that the difference between the solution's temperature and its boiling temperature is the primary factor influencing the absorber's performance.
Resumo:
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.