997 resultados para Urban computing
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
The relation between the information/knowledge expression and the physical expression can be involved as one of items for an ambient intelligent computing [2],[3]. Moreover, because there are so many contexts around user/spaces during a user movement, all appplcation which are using AmI for users are based on the relation between user devices and environments. In these situations, it is possible that the AmI may output the wrong result from unreliable contexts by attackers. Recently, establishing a server have been utilizes, so finding secure contexts and make contexts of higher security level for save communication have been given importance. Attackers try to put their devices on the expected path of all users in order to obtain users informationillegally or they may try to broadcast their SPAMS to users. This paper is an extensionof [11] which studies the Security Grade Assignment Model (SGAM) to set Cyber-Society Organization (CSO).
Resumo:
To select each node by devices and by contexts in urban computing, users have to put their plan information and their requests into a computing environment (ex. PDA, Smart Devices, Laptops, etc.) in advance and they will try to keep the optimized states between users and the computing environment. However, because of bad contexts, users may get the wrong decision, so, one of the users’ demands may be requesting the good server which has higher security. To take this issue, we define the structure of Dynamic State Information (DSI) which takes a process about security including the relevant factors in sending/receiving contexts, which select the best during user movement with server quality and security states from DSI. Finally, whenever some information changes, users and devices get the notices including security factors, then an automatic reaction can be possible; therefore all users can safely use all devices in urban computing.
Resumo:
Advances in Intelligent Systems and Computing, 353
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership
Resumo:
In this work we propose a new automatic methodology for computing accurate digital elevation models (DEMs) in urban environments from low baseline stereo pairs that shall be available in the future from a new kind of earth observation satellite. This setting makes both views of the scene similarly, thus avoiding occlusions and illumination changes, which are the main disadvantages of the commonly accepted large-baseline configuration. There still remain two crucial technological challenges: (i) precisely estimating DEMs with strong discontinuities and (ii) providing a statistically proven result, automatically. The first one is solved here by a piecewise affine representation that is well adapted to man-made landscapes, whereas the application of computational Gestalt theory introduces reliability and automation. In fact this theory allows us to reduce the number of parameters to be adjusted, and tocontrol the number of false detections. This leads to the selection of a suitable segmentation into affine regions (whenever possible) by a novel and completely automatic perceptual grouping method. It also allows us to discriminate e.g. vegetation-dominated regions, where such an affine model does not apply anda more classical correlation technique should be preferred. In addition we propose here an extension of the classical ”quantized” Gestalt theory to continuous measurements, thus combining its reliability with the precision of variational robust estimation and fine interpolation methods that are necessary in the low baseline case. Such an extension is very general and will be useful for many other applications as well.
Resumo:
Beim Übergang von der Kassler Innenstadt zu den Randlagen der Fußgängerzone verschiebt sich die Wahrnehmung von einer belebten Einkaufsstraße zu einem aussterbenden Quartier mit einem zunehmendem Leerstand von Ladenflächen. Das Projekt mit dem Titel „Urban Glow“, welches an der Schnittstelle von Architektur und Kunst agiert, geht der Frage nach, wie dieser Stadtraum mit Hilfe minimaler architektonischer Eingriffe wieder in das Bewusstsein der Bewohner geholt werden kann.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation.
Resumo:
The Web of Data currently comprises ? 62 billion triples from more than 2,000 different datasets covering many fields of knowledge3. This volume of structured Linked Data can be seen as a particular case of Big Data, referred to as Big Semantic Data [4]. Obviously, powerful computational configurations are tradi- tionally required to deal with the scalability problems arising to Big Semantic Data. It is not surprising that this ?data revolution? has competed in parallel with the growth of mobile computing. Smartphones and tablets are massively used at the expense of traditional computers but, to date, mobile devices have more limited computation resources. Therefore, one question that we may ask ourselves would be: can (potentially large) semantic datasets be consumed natively on mobile devices? Currently, only a few mobile apps (e.g., [1, 9, 2, 8]) make use of semantic data that they store in the mobile devices, while many others access existing SPARQL endpoints or Linked Data directly. Two main reasons can be considered for this fact. On the one hand, in spite of some initial approaches [6, 3], there are no well-established triplestores for mobile devices. This is an important limitation because any po- tential app must assume both RDF storage and SPARQL resolution. On the other hand, the particular features of these devices (little storage space, less computational power or more limited bandwidths) limit the adoption of seman- tic data for different uses and purposes. This paper introduces our HDTourist mobile application prototype. It con- sumes urban data from DBpedia4 to help tourists visiting a foreign city. Although it is a simple app, its functionality allows illustrating how semantic data can be stored and queried with limited resources. Our prototype is implemented for An- droid, but its foundations, explained in Section 2, can be deployed in any other platform. The app is described in Section 3, and Section 4 concludes about our current achievements and devises the future work.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. In this paper, we investigate the problem of evaluating the top k distinguished “features” for a “cluster” based on weighted proximity relationships between the cluster and features. We measure proximity in an average fashion to address possible nonuniform data distribution in a cluster. Combining a standard multi-step paradigm with new lower and upper proximity bounds, we presented an efficient algorithm to solve the problem. The algorithm is implemented in several different modes. Our experiment results not only give a comparison among them but also illustrate the efficiency of the algorithm.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.