87 resultados para Urate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial renal glucosuria (FRG) is a rare co -dominantly inherited benign phenotype characterized by the presence of glucose in the urine. It is caused by mutations in the SLC5A2 gene that encodes SGLT2, a Na+ -glucose co -transporter. The purpose of our current work was twofold: to characterize the molecular and phenotype findings of an FRG cohort and, in addition, to detail the SGLT2 expression in the adult human kidney. The phenotype of FRG pedigrees was evaluated using direct sequencing for the identification of sequence variations in the SLC5A2 gene. The expression of SGLT2 in the adult human kidney was studied by immunofluorescence on kidney biopsy specimens. In the absence of renal biopsies from FRG individuals, and in order to evaluate the potential disruption of SGLT2 expression in a glucosuric nephropathy, we have selected cases of nucleoside analogues induced proximal tubular toxicity. We identified six novel SLC5A2 mutations in six FRG pedigrees and described the occurrence of hyperuricosuria associated with hypouricaemia in the two probands with the most severe phenotypes. Histopathological studies proved that SGLT2 is localized to the brush -border of the proximal tubular epithelia cell and that this normal pattern was found to be disrupted in cases of nucleoside analogues induced tubulopathy. We present six novel SLC5A2 mutations, further contributing to the allelic heterogeneity in FRG, and identified hyperuricosuria and hypouricaemia as part of the FRG phenotype. SGLT2 is localized to the brush -border of the proximal tubule in the adult human normal kidney, and aberrant expression of the co -transporter may underlie the glucosuria seen with the use of nucleoside analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the study was to determine reference percentiles for the urinary (U) oxalate (Ox) and urate (Ura) to creatinine (Cr) concentration ratios in the second morning urine of healthy infants, children, and adolescents. The urinary oxalate and urate to creatinine ratios were determined in the spontaneously voided second morning urine sample. To test reproducibility, two urine samples were analyzed on 2 consecutive weeks in 63% of the subjects. Three hundred eighty-four healthy children (181 girls, 203 boys), aged 1 month to 17 years, from nurseries, kindergartens, and schools of Lausanne, Switzerland, were studied. The 5th and 95th percentiles were determined from the total number of urine samples (627) after confirmation that there was no order effect between repeated measurements and there were no significant sex differences. A nonlinear regression analysis in terms of age was used to smooth the calculated percentiles. In this manner, curves were obtained from which the reference values can be read at any given age. The 95th percentiles decreased with age: for UOx/Cr from 0.175 mg/mg (0.22 mol/mol) at 1 to 6 months to 0.048 mg/mg (0.06 mol/mol) from 7 years and beyond; and UUra/Cr from 2.378 mg/mg (1.6 mol/mol) at 1 to 6 months to 0.594 mg/mg (0.4 mol/mol) in adolescence. We provide 5th and 95th percentile curves for the UOx/Cr and UUra/Cr ratios determined from the second morning urine samples in a large cohort of healthy infants, children, and adolescents. Values were determined by standard analytical chemical techniques and were analyzed by powerful statistical methods. The calculated 95th percentile for the UOx/Cr values fell rather rapidly and reached normal adult values by the age of 7 years, whereas for UUra/Cr, the 95th percentile decreased slowly and stabilized in adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Purpose: The primary treatment goals for gouty arthritis (GA) are rapid relief of pain and inflammation during acute attacks, and long-term hyperuricemia management. A post-hoc analysis of 2 pivotal trials was performed to assess efficacy and safety of canakinumab (CAN), a fully human monoclonal anti-IL-1_ antibody, vs triamcinolone acetonide (TA) in GA patients unable to use NSAIDs and colchicine, and who were on stable urate lowering therapy (ULT) or unable to use ULT. Methods: In these 12-week, randomized, multicenter, double-blind, double-dummy, active-controlled studies (_-RELIEVED and _-RELIEVED II), patients had to have frequent attacks (_3 attacks in previous year) meeting preliminary GA ACR 1977 criteria, and were unresponsive, intolerant, or contraindicated to NSAIDs and/or colchicine, and if on ULT, ULT was stable. Patients were randomized during an acute attack to single dose CAN 150 mg s.c. or TA 40 mg i.m. and were redosed "on demand" for each new attack. Patients completing the core studies were enrolled into blinded 12-week extension studies to further investigate on-demand use of CAN vs TA for new attacks. The subpopulation selected for this post-hoc analysis was (a) unable to use NSAIDs and colchicine due to contraindication, intolerance or lack of efficacy for these drugs, and (b) currently on ULT, or contraindication or previous failure of ULT, as determined by investigators. Subpopulation comprised 101 patients (51 CAN; 50 TA) out of 454 total. Results: Several co-morbidities, including hypertension (56%), obesity (56%), diabetes (18%), and ischemic heart disease (13%) were reported in 90% of this subpopulation. Pain intensity (VAS 100 mm scale) was comparable between CAN and TA treatment groups at baseline (least-square [LS] mean 74.6 and 74.4 mm, respectively). A significantly lower pain score was reported with CAN vs TA at 72 hours post dose (1st co-primary endpoint on baseline flare; LS mean, 23.5 vs 33.6 mm; difference _10.2 mm; 95% CI, _19.9, _0.4; P_0.0208 [1-sided]). CAN significantly reduced risk for their first new attacks by 61% vs TA (HR 0.39; 95% CI, 0.17-0.91, P_0.0151 [1-sided]) for the first 12 weeks (2nd co-primary endpoint), and by 61% vs TA (HR 0.39; 95% CI, 0.19-0.79, P_0.0047 [1-sided]) over 24 weeks. Serum urate levels increased for CAN vs TA with mean change from baseline reaching a maximum of _0.7 _ 2.0 vs _0.1 _ 1.8 mg/dL at 8 weeks, and _0.3 _ 2.0 vs _0.2 _ 1.4 mg/dL at end of study (all had GA attack at baseline). Adverse Events (AEs) were reported in 33 (66%) CAN and 24 (47.1%) TA patients. Infections and infestations were the most common AEs, reported in 10 (20%) and 5 (10%) patients treated with CAN and TA respectively. Incidence of SAEs was comparable between CAN (gastritis, gastroenteritis, chronic renal failure) and TA (aortic valve incompetence, cardiomyopathy, aortic stenosis, diarrohea, nausea, vomiting, bicuspid aortic valve) groups (2 [4.0%] vs 2 [3.9%]). Conclusion: CAN provided superior pain relief and reduced risk of new attack in highly-comorbid GA patients unable to use NSAIDs and colchicine, and who were currently on stable ULT or unable to use ULT. The safety profile in this post-hoc subpopulation was consistent with the overall _-RELIEVED and _-RELIEVED II population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT9 (SLC2A9) is a newly described urate transporter whose function, characteristics, and localization have just started to be elucidated. Some transport properties of human GLUT9 have been studied in the Xenopus laevis oocyte expression system, but the type of transport (uniport, coupled transport system, stoichiometry ... .) is still largely unknown. We used the same experimental system to characterize in more detail the transport properties of mouse GLUT9, its sensitivity to several uricosuric drugs, and the specificities of two splice variants, mGLUT9a and mGLUT9b. [(14)C]urate uptake measurements show that both splice variants are high-capacity urate transporters and have a K(m) of approximately 650 microM. The well-known uricosuric agents benzbromarone (500 microM) and losartan (1 mM) inhibit GLUT9-mediated urate uptake by 90 and 50%, respectively. Surprisingly, phloretin, a glucose-transporter blocker, inhibits [(14)C]urate uptake by approximately 50% at 1 mM. Electrophysiological measurements suggest that urate transport by mouse GLUT9 is electrogenic and voltage dependent, but independent of the Na(+) and Cl(-) transmembrane gradients. Taken together, our results suggest that GLUT9 works as a urate (anion) uniporter. Finally, we show by RT-PCR performed on RNA from mouse kidney microdissected tubules that GLUT9a is expressed at low levels in proximal tubules, while GLUT9b is specifically expressed in distal convoluted and connecting tubules. Expression of mouse GLUT9 in the kidney differs from that of human GLUT9, which could account for species differences in urate handling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma urate levels are higher in humans than rodents (240-360 vs. â^¼30 μM) because humans lack the liver enzyme uricase. High uricemia in humans may protect against oxidative stress, but hyperuricemia also associates with the metabolic syndrome, and urate and uric acid can crystallize to cause gout and renal dysfunctions. Thus, hyperuricemic animal models to study urate-induced pathologies are needed. We recently generated mice with liver-specific ablation of Glut9, a urate transporter providing access of urate to uricase (LG9KO mice). LG9KO mice had moderately high uricemia (â^¼120 μM). To further increase their uricemia, here we gavaged LG9KO mice for 3 days with inosine, a urate precursor; this treatment was applied in both chow- and high-fat-fed mice. In chow-fed LG9KO mice, uricemia peaked at 300 μM 2 h after the first gavage and normalized 24 h after the last gavage. In contrast, in high-fat-fed LG9KO mice, uricemia further rose to 500 μM. Plasma creatinine strongly increased, indicating acute renal failure. Kidneys showed tubule dilation, macrophage infiltration, and urate and uric acid crystals, associated with a more acidic urine. Six weeks after inosine gavage, plasma urate and creatinine had normalized. However, renal inflammation, fibrosis, and organ remodeling had developed despite the disappearance of urate and uric acid crystals. Thus, hyperuricemia and high-fat diet feeding combined to induce acute renal failure. Furthermore, a sterile inflammation caused by the initial crystal-induced lesions developed despite the disappearance of urate and uric acid crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase-deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental bacterial meningitis due to Streptococcus pneumoniae in infant rats was associated with a time-dependent increase in CSF and cortical urate that was approximately 30-fold elevated at 22 h after infection compared to baseline. This increase was mirrored by a 20-fold rise in cortical xanthine oxidoreductase activity. The relative proportion of the oxidant-producing xanthine oxidase to total activity did not increase, however. Blood plasma levels of urate also increased during infection, but part of this was as a consequence of dehydration, as reflected by elevated ascorbate concentrations in the plasma. Administration of the radical scavenger alpha-phenyl-tert-butyl nitrone, previously shown to be neuroprotective in the present model, did not significantly affect either xanthine dehydrogenase or xanthine oxidase activity, and increased even further cortical accumulation of urate. Treatment with the xanthine oxidoreductase inhibitor allopurinol inhibited CSF urate levels earlier than those in blood plasma, supporting the notion that urate was produced within the brain. However, this treatment did not prevent the loss of ascorbate and reduced glutathione in the cortex and CSF. Together with data from the literature, the results strongly suggest that xanthine oxidase is not a major cause of oxidative stress in bacterial meningitis and that urate formation due to induction of xanthine oxidoreductase in the brain may in fact represent a protective response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An affinity-purified monospecific antibody was prepared to study the differential expression of the peroxisomal enzyme urate oxidase in rat liver during development and in various metabolic states. Monospecific antibody for urate oxidase was affinity purified from a pool of antibodies initially produced against a mixture of proteins from a Percoll density gradient fraction. Immunogold staining of samples of the gradient fraction and rat liver tissue with the affinity-purified antibody demonstrated labelling of peroxisomal core structures. Screening of liver homogenates from rats at different developmental stages using immunoblot analysis demonstrated low levels of urate oxidase prior to 20 days of age; at 20 days of age, urate oxidase levels are 2-fold greater than the 15-day old levels and approximate adult levels. Catalase expression during rat development mimicked the differential expression pattern of urate oxidase. The increase between days 15 and 20 was determined to be independent of the process of weaning. Administration of exogenous glucocorticoid hormone to 10-day old rats resulted in a precocious rise (2.5-fold) in urate oxidase levels, but adrenalectomy at 10 days of age did not cause decreased expression in the fourth week of life. In adult animals, exogenous glucocorticoid did not influence urate oxidase levels, but adrenalectomized rats had urate oxidase levels that were 40 percent of control expression 4 days post-surgery. Catalase expression was not influenced by glucocorticoid status in these studies. Glucocorticoid regulation of urate oxidase expression appears to be one part of a more complex mechanism controlling levels of the enzyme. Exogenous glucocorticoid administration influenced urate oxidase levels in an age-dependent manner; in addition, it is possible that the control mechanism for urate oxidase may include factors which can modulate expression in the absence of glucocorticoids. The effect of glucocorticoids on urate oxidase expression can not be extended to include all peroxisomal proteins, since catalase is unaffected. Glucocorticoids appear to participate in the complex regulation of urate oxidase expression; glucocorticoids influence urate oxidase specifically and do not modulate all peroxisomal proteins. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In both humans and birds, urate is an important antioxidant when maintained at normal plasma concentrations. Though human kidneys primarily reabsorb filtered urate, while those of birds perform mostly secretion, both maintain urate levels at ~300microM. The importance of maintaining urate levels within the homeostatic range was observed when the study of several prominent diseases revealed an association with hyperuricemia. This study examined the effect of elevated zinc concentration on avian urate secretion. Here, acute exposure of chicken proximal tubule epithelial cells (cPTCs) to zinc stress had no effect on urate secretion, but prolonged zinc-induced cellular stress inhibited active transepithelial urate secretion with no change in Mrp4 expression, glucose transport, or transepithelial resistance. Moreover, zinc had no effect on urate transport by isolated brush border membrane vesicles, suggesting involvement of a more complex cellular stress adaptation. Previous work has demonstrated that AMP-activated protein kinase (AMPK), a critical metabolic regulator, conserves energy during cellular stress by shutting down ATP-utilizing processes and activating ATP-generating processes. Pharmacological activation of AMPK by AICAR produced decreased urate secretion by cPTCs similar to the effect seen with prolonged exposure to zinc, while the AMPK inhibitor Compound C prevented both AICAR and zinc inhibition of urate secretion, suggesting a stress induced mechanism of regulation. Supported by NSF. IACUC #A08-046.