13 resultados para Upwinding
Resumo:
In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work is concerned with the computation of incompressible axisymmetric and fall three-dimensional free-surface flows. In particular, the circular-hydraulic jump is simulated and compared with approximate analytic solutions. However, the principal thrust of this paper is to provide a real problem as a test bed for comparing the many existing convective approximations. Their performance is compared; SMART, HLPA and VONOS emerge as acceptable upwinding methods for this problem. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
Resumo:
This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
A new way of flux-splitting, termed as the wave-particle splitting is presented for developing upwind methods for solving Euler equations of gas dynamics. Based on this splitting, two new upwind methods termed as Acoustic Flux Vector Splitting (AFVS) and Acoustic Flux Difference Splitting (AFDS) methods are developed. A new Boltzmann scheme, which closely resembles the wave-particle splitting, is developed using the kinetic theory of gases. This method, termed as Peculiar Velocity based Upwind (PVU) method, uses the concept of peculiar velocity for upwinding. A special feature of all these methods that the unidirectional and multidirectional parts of the flux vector are treated separately. Extensive computations done using these schemes demonstrate the soundness of the ideas.
Resumo:
A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier-Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1-D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion-based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non-Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas-solid flow in a bubbling fluidized bed. © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper reports experiments on the use of a recently introduced advection bounded upwinding scheme, namely TOPUS (Computers & Fluids 57 (2012) 208-224), for flows of practical interest. The numerical results are compared against analytical, numerical and experimental data and show good agreement with them. It is concluded that the TOPUS scheme is a competent, powerful and generic scheme for complex flow phenomena.