994 resultados para Uptake mechanisms
Resumo:
Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores-the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.
Resumo:
The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.
Resumo:
Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
Resumo:
The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Aim: We examined cellular uptake mechanisms of fluorescently labeled polymer-coated gold nanoparticles (NPs) under different biological conditions by two quantitative, microscopic approaches. Materials & methods: Uptake mechanisms were evaluated using endocytotic inhibitors that were tested for specificity and cytotoxicity. Cellular uptake of gold NPs was analyzed either by laser scanning microscopy or transmission electron microscopy, and quantified by means of stereology using cells from the same experiment. Results: Optimal inhibitor conditions were only achieved with chlorpromazine (clathrin-mediated endocytosis) and methyl-β-cyclodextrin (caveolin-mediated endocytosis). A significant methyl-β-cyclodextrin-mediated inhibition (63-69%) and chlorpromazine-mediated increase (43-98%) of intracellular NPs was demonstrated with both imaging techniques, suggesting a predominant uptake via caveolin-medicated endocytois. Transmission electron microscopy imaging revealed more than 95% of NPs localized in intracellular vesicles and approximately 150-times more NP events/cell were detected than by laser scanning microscopy. Conclusion: We emphasize the importance of studying NP-cell interactions under controlled experimental conditions and at adequate microscopic resolution in combination with stereology. Original submitted 10 July 2012; Revised submitted 23 January 2013.
Resumo:
Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3-) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3- by the surface-bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3- uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3-: CO2 = 940:1) and pHT 7.65 (HCO3-: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3- uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3- uptake by M. pyrifera is via an AE protein, regardless of the HCO3-: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3- to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3- uptake in M. pyrifera was different than that in other Laminariales studied (CAext-catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3-:CO2 due to ocean acidification.
Resumo:
As human papillomavirus-like particles (HPV-VLP) represent a promising vaccine delivery vehicle, delineation of the interaction of VLP with professional APC should improve vaccine development. Differences in the capacity of VLP to signal dendritic cells (DC) and Langerhans cells (LC) have been demonstrated, and evidence has been presented for both clathrin-coated pits and proteoglycans (PG) in the uptake pathway of VLP into epithelial cells. Therefore, we compared HPV-VLP uptake mechanisms in human monocyte-derived DC and LC, and their ability to cross-present HPV VLP-associated antigen in the MHC class I pathway. DC and LC each took up virus-like particles (VLP). DC uptake of and signalling by VLP was inhibited by amiloride or cytochalasin D (CCD), but not by filipin treatment, and was blocked by several sulfated and non-sulfated polysaccharides and anti-CD16. In contrast, LC uptake was inhibited only by filipin, and VLP in LC were associated with caveolin, langerin, and CD1a. These data suggest fundamentally different routes of VLP uptake by DC and LC. Despite these differences, VLP taken up by DC and LC were each able to prime naive CD8(+) T cells and induce cytolytic effector T cells in vitro. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is no effective cure. The over-expression of a number of genes, including the epidermal growth factor receptor (EGFr), has been implicated as a causative factor of tumourigenesis. Ribozymes are a class of ribonucleic acid that possess enzymatic properties. They can inhibit gene-expression in a highly sequence specific manner by catalysing the trans-cleavage of target RNA. The potential use of synthetic hammerhead ribozymes as novel anti-brain tumour agents was investigated in this study. The successful use of synthetic, exogenously administered ribozymes for such applications will require chemical modifications that improve biological stability and a fundamental understanding of cellular uptake mechanisms. Chimeric 2'-O-methylated hammerhead ribozymes proved to be significantly more stable (>4000-fold) in serum than unmodified RNA ribozymes and exhibited high in vitro catalytic activity. The cellular association of an internally [32P]-labelled 2'-O-methylated chimeric ribozyme in U87-MG human glioma cells was temperature-, energy- and pH-dependent and involved an active process that could be competed with a variety of polyanions. Indications are that the predominant mechanism of uptake is by adsorptive and / or receptor mediated endocytosis. Twenty 2'-O-methylated chimeric ribozymes were designed to cleave various sites along the EGFr mRNA. In vitro, 18 ribozymes exhibited high activity in cleaving a complementary short substrate. Using LipofectAMINETM as a delivery agent, the efficacy of these ribozymes was evaluated in the A431 cell line, which expresses amplified levels of EGFr. Studies revealed that although the ribozymes were taken up by the cells and remained stable over a period of 4 days, no significant reduction in either EGFr expression or cell proliferation was evident. The presence of telomerase, a ribonucleoprotein responsible for telomere elongation, has been strongly associated with tumour progression. The biological activity of a 2'-O-methylated ribozyme targeted against the RNA component of telomerase was determined. The ribozyme exhibited specific dose-dependent inhibition of telomerase activity in U87-MG cell lysates with an IC50 of –4μM. When 4μM ribozyme was delivered to intact U87-MG cells, complexed to LipofectAMINETM, telomerase activity was significantly reduced to 74.5±4.17% of the untreated control. Free ribozyme showed no significant inhibitory effect demonstrating the importance of an appropriate delivery system for optimum delivery of exogenously administered ribozymes.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
On solid substrates, yeast colonies pass through distinct developmental phases characterized by the changes in pH of their surroundings from acidic to nearly alkaline and vice versa. At the beginning of the alkali phase colonies start to produce ammonia, which functions as a quorum-sensing molecule inducing the reprogramming of cell metabolism. Such reprogramming includes, among others, the activation of several plasma membrane transporters and is connected with colony differentiation. In the present study, we show that colony cells can use two transport mechanisms to import lactic acid: a ‘saturable’ component of the transport, which requires the presence of a functional Jen1p transporter, and a ‘non-saturable’ component (diffusion) that is independent of Jen1p. During colony development, the efficiency of both transport components changes similarly in central and outer colonial cells. Although the lactate uptake capacity of central cells gradually decreases during colony development, the lactate uptake capacity of outer cells peaks during the alkali phase and is also kept relatively high in the second acidic phase. This lactate uptake profile correlates with the localization of the Jen1p transporter to the plasma membrane of colony cells. Both lactic acid uptake mechanisms are diminished in sok2 colonies where JEN1 expression is decreased. The Sok2p transcription factor may therefore be involved in the regulation of non-saturable lactic acid uptake in yeast colonies.
Resumo:
Thanks to the continuous progress made in recent years, medical imaging has become an important tool in the diagnosis of various pathologies. In particular, magnetic resonance imaging (MRI) permits to obtain images with a remarkably high resolution without the use of ionizing radiation and is consequently widely applied for a broad range of conditions in all parts of the body. Contrast agents are used in MRI to improve tissue discrimination. Different categories of contrast agents are clinically available, the most widely used being gadolinium chelates. One can distinguish between extracellular gadolinium chelates such as Gd-DTPA, and hepatobiliary gadolinium chelates such as Gd-BOPTA. The latter are able to enter hepatocytes from where they are partially excreted into the bile to an extent dependent on the contrast agent and animal species. Due to this property, hepatobiliary contrast agents are particularly interesting for the MRI of the liver. Actually, a change in signal intensity can result from a change in transport functions signaling the presence of impaired hepatocytes, e.g. in the case of focal (like cancer) or diffuse (like cirrhosis) liver diseases. Although the excretion mechanism into the bile is well known, the uptake mechanisms of hepatobiliary contrast agents into hepatocytes are still not completely understood and several hypotheses have been proposed. As a good knowledge of these transport mechanisms is required to allow an efficient diagnosis by MRI of the functional state of the liver, more fundamental research is needed and an efficient MRI compatible in vitro model would be an asset. So far, most data concerning these transport mechanisms have been obtained by MRI with in vivo models or by a method of detection other than MRI with cellular or sub-cellular models. Actually, no in vitro model is currently available for the study and quantification of contrast agents by MRI notably because high cellular densities are needed to allow detection, and no metallic devices can be used inside the magnet room, which is incompatible with most tissue or cell cultures that require controlled temperature and oxygenation. The aim of this thesis is thus to develop an MRI compatible in vitro cellular model to study the transport of hepatobiliary contrast agents, in particular Gd-BOPTA, into hepatocytes directly by MRI. A better understanding of this transport and especially of its modification in case of hepatic disorder could permit in a second step to extrapolate this knowledge to humans and to use the kinetics of hepatobiliary contrast agents as a tool for the diagnosis of hepatic diseases.
Resumo:
There is an increasing need to develop improved systems for predicting the safety of xenobiotics. However, to move beyond hazard identification the available concentration of the test compounds needs to be incorporated. In this study cyclosporine A (CsA) was used as a model compound to assess the kinetic profiles in two rodent brain cell cultures after single and repeated exposures. CsA induced-cyclophilin B (Cyp-B) secretion was also determined as CsA-specific pharmacodynamic endpoint. Since CsA is a potent p-glycoprotein substrate, the ability of this compound to cross the blood-brain barrier (BBB) was also investigated using an in vitro bovine model with repeated exposures up to 14days. Finally, CsA uptake mechanisms were studied using a parallel artificial membrane assay (PAMPA) in combination with a Caco-2 model. Kinetic results indicate a low intracellular CsA uptake, with no marked bioaccumulation or biotransformation. In addition, only low CsA amounts crossed the BBB. PAMPA and Caco-2 experiments revealed that CsA is mostly trapped to lipophilic compartments and exits the cell apically via active transport. Thus, although CsA is unlikely to enter the brain at cytotoxic concentrations, it may cause alterations in electrical activity and is likely to increase the CNS concentration of other compounds by occupying the BBBs extrusion capacity. Such an integrated testing system, incorporating BBB, brain culture models and kinetics could be applied for assessing neurotoxicity potential of compounds.
Resumo:
The overall purpose of this thesis was to increase the knowledge on the biogeochemistry of rural acid sulphate (AS) soil environments and urban forest ecosystems near small towns in Western Finland. In addition, the potential causal relationship between the distribution of AS soils and geographical occurence of multiple sclerosis (MS) disease was assessed based on a review of existing literature and data. Acid sulphate soils, which occupy an area of approximately 17–24 million hectare worldwide, are regarded as the nastiest soils in the world. Independent of the geographical locality of these soils, they pose a great threat to their surrounding environment if disturbed. The abundant metal-rich acid drainage from Finnish AS soils, which is a result of sulphide oxidation due to artificial farmland drainage, has significant but spatially and temporally variable ecotoxicological impacts on biodiversity and community structure of fish, benthic invertebrates and macrophytes. This has resulted in mass fish kills and even eradication of sensitive fish species in affected waters. Moreover, previous investigations demonstrated significantly enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times higher concentrations of Al in cow milk originating from AS soils in Western Finland. Nevertheless, the results presented here demonstrate, in general, relatively moderate metal concentrations in oats and cabbage grown on AS soils in Western Finland, although some of the studied fields showed anomalous values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), similar to that of the previous investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in oats and Co and Zn in cabbage were governed by soil geochemistry as these metals were correlated with corresponding concentrations extracted from the soil by NH4Ac-EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage were uncorrelated to that of the easily soluble concentrations in the soils, suggesting that biological processes (e.g. plant-root processes) overshadow geochemical variation. The concentrations of K and Mg in cabbage, which showed a low spread and were strongly correlated to the NH4Ac extractable contents in the soil, were governed by both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be more important than the influence of soil geochemistry. The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and around small towns was to a high degree controlled by biological cycling, which was indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus and moss, and the low spread of these nutrients in moss and needles. The concentration variations of elements in till are mainly due to natural processes (e.g. intrusions, weathering, mineralogical variations in the bedrock). There was a strong spatial pattern for B in humus, moss and needles, which was suggested to be associated with anthropogenic emissions from nearby town centres. Geogenic dust affected the spatial distribution of Fe and Cr in moss, while natural processes governed the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, Ni and Pb in humus and moss were strong and diverse, and related to current industry, the former steel industry, coal combustion, and natural geochemical processes. An intriguing Cu anomaly was found in moss. Since it was located close to a main railway line and because the railway line´s electric cables are made of Cu, it was suggested that the reason for the Cu anomaly is corrosion of these cables. In Western Finland, where AS soils are particularly abundant and enrich the metal concentrations of stream waters, cow milk and to some extent crops, an environmental risk assessment would be motivated to elucidate if the metal dispersion affect human health. Within this context, a topic of concern is the distribution of multiple sclerosis as high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil type in the Seinäjoki area has been demonstrated to be very severe in terms of metal leaching, this area also shows one of the highest MS rates reported worldwide. On a local scale, these severe AS soil types coincide well with the corresponding MS clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that these spatial correlations are causal, as multiple sclerosis has been suggested to result from a combination of genetic and environmental factors.
Resumo:
To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound L-R-aminoethylphosphonic acid (L-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolysed in situ by bacterial borne glycosidase enzymes, to selectively afford L-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of L-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained L-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75 mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of L-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)