950 resultados para Upper atmosphere
Resumo:
v. 8 no. 9
Resumo:
This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Use of a conductive bare tape electrically floating in low Earth orbit as an effective electron beam source to produce artificial auroral effects, free of problems that mard tandard beams, is considered. Ambient ions impacting the tape with keV energies over most of its length liberate secondary electrons that race down the magnetic field, excite neutrals in the E layer, and result in auroral emissions. The tether would operate with both a power supply and a plasma contactor off at nighttime; power and contactor would be on at daytime for reboost. Tomographic analysis of auroral emissions from the footprint of the beam, as observed from the spacecraft, can provide density profiles of dominant neutral species in the E layer. A characteristic tether system, at altitude 300 km and moderate orbital inclination, would involve an aluminum tape with a length of 20 km, a width of 15 mm, and a thickness of 0.2 mm for a full-system mass around 1200 kg, with two thirds going into the power subsystem.
Resumo:
Use of a (bare) conductive tape electrically floating in LEO as an effective e-beam source that produces artificial auroras, and is free of problems that have marred standard beams, is considered. Ambient ions impacting the tape with KeV energies over most of its length liberate secondary electrons, which race down the magnetic field and excite neutrals in the E-layer, resulting in auroral emissions. The tether would operate at night-time with both a power supply and a plasma contactor off; power and contactor would be on at daytime for reboost. The optimal tape thickness yielding a minimum mass for an autonomous system is determined; the alternative use of an electric thruster for day reboost, depending on mission duration, is discussed. Measurements of emission brightness from the spacecraft could allow determination of the (neutral) density vertical profile in the critical E-layer; the flux and energy in the beam, varying along the tether, allow imaging line-of-sight integrated emissions that mix effects with altitude-dependent neutral density and lead to a brightness peak in the beam footprint at the E-layer. Difficulties in tomographic inversion, to determine the density profile, result from beam broadening, due to elastic collisions, which flattens the peak, and to the highly nonlinear functional dependency of line-of-sight brightness. Some dynamical issues are discussed.
Resumo:
Prepared on behalf of NASA at its Office of Space Science and Applications, Earth Science and Applications Division.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
U of I Only
Resumo:
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.
Resumo:
We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H2 molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.
Resumo:
Cover title.
Resumo:
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E(p) greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments.