994 resultados para Upper Bay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salinity in the Bay of Bengal is highly heterogeneous, with extremely fresh waters found at the surface in the Northern part of the basin, and saltier waters at subsurface as well as to the south. This paper investigates the seasonal structure of sea surface salinity of the Bay in a regional high-resolution model forced by ERA-Interim reanalysis and various precipitation products. Surface circulation is believed to drive the spreading of northern Bay of Bengal fresh waters to the rest of the Indian Ocean. We first present a series of experiments to infer the sensitivity of modeled circulation to various numerical choices. Surface circulation is found to be sensitive to the horizontal resolution of the model, with the 1/12 degrees version appearing much more realistic than the 1/4 degrees version. The sidewall boundary condition is also drastically influencing the characteristics of the western boundary current simulated. We then investigate the sensitivity of the salinity response to the various precipitation products. We observe that ERA-Interim excess precipitation induces a fresh bias in the surface salinity response. Spaceborne precipitation products are more satisfactory. We then identify the pathways of the northern Bay freshwater mass, based on passive tracers experiments. Our model suggests that over timescales of a few months, vertical exchanges between the upper fresh layer and the underlying saltier layer appear to be the main export pathway for the freshwater. The horizontal circulation within the mixed layer also acts to convey fresh waters out of the Bay at these timescales, but in a lesser quantity compared to the vertical export. Beyond its intrinsic interest for the understanding of Bay of Bengal physics, this study highlights the need for a careful design of any realistic numerical model, in three key aspects: the choice of the resolution of the model, the choice of the sub-grid scale parameterizations, and the choice of the forcing fluxes. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of possible causes for extensive mortality of oysters in the Upper Chesapeake Bay was taken on by year-round monitoring of conditions during a two-year period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upper Bay of Fundy is a critical stopover site for Semipalmated Sandpipers (Calidris pusilla) during their fall migration. However, little is known about factors that influence selection of feeding and roosting sites by these birds, or the extent to which birds move between different sites during their time in the region. Using radio-telemetry, we studied movement patterns, examined habitat use, and tested hypotheses associated with factors influencing foraging and roost-site selection. Movements of radio-tagged sandpipers were tracked in the upper Bay of Fundy in August 2004 and 2005. In 2004, sandpipers from the Minas Basin, Nova Scotia and Chignecto Bay, New Brunswick and Nova Scotia, were tracked, and in 2005, sandpipers were tracked only in Chignecto Bay. Sandpipers were highly mobile in both the Minas Basin 2004 and Chignecto Bay 2005, making daily movements of up to 20 km between foraging and roosting sites, although very little movement was detected in Chignecto Bay in 2004. Migrating sandpipers appeared to select foraging sites based on relative safety, as measured by distance to cover, provided that these sites offered an adequate food supply. Similarly, roosting sandpipers preferred sites that were far from nearby trees that might offer cover to predators. This preference for safe sites became more apparent later in their stay in the Bay of Fundy, when birds were heavier and, therefore, possibly more vulnerable to predation. Semipalmated Sandpipers appear to be flexible during their time in the upper Bay of Fundy, displaying year-to-year and site-to-site variability in movement and mudflat usage. Therefore, multiple, synchronized population counts should be conducted at known roost sites in order to more accurately estimate Semipalmated Sandpiper abundance in this region. Furthermore, in a highly dynamic system where food can be variable, landscape features such as distance to cover may be important factors to consider when selecting candidate sites for shorebird conservation measures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Chart of the entrance of Hudson's River, from Sandy Hook to New York : with the banks, depths of water, sailing-marks, & ca. It was printed for Robt. Sayer & John Bennett, sea chart & map-sellers ... 1st June 1776. Scale [ca. 1:70,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows coastal features such as lighthouses, rocks, channels, points, coves, islands, and more. Depths shown by soundings and shading. Relief shown by hachures. Includes notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 2, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 2 of 6 total images of the six sheet source map, representing the southeast portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 1, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 1 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 4, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 4 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 3, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 3 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 5, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 5 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 6, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 6 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contemporary striped bass population modeling efforts on coastal stocks point to a reduced population fecundity in Chesapeake Bay being partially responsible for declining reproduction (Anonymous 1985; Boreman and Goodyear 1984). Fecundity values used in these models were based on earlier work by jackson and tiller (1952), lewis and Bonner (1966), Hollis (1967) and Holland and Yelverton (1973). An important feature to the Boreman and Goodyear (1985) model (FSIM) is an accurate determination of the fecundity weight regression equation used to determine the rate of egg deposition over time. Egg deposition models in turn can be used to determine how reproductive potential is changing over time in response to various management actions, i.e. reducing fishing mortality rates. thus it is imperative to follow population stock structure in the Bay system and to develop a contemporary fecundity relationship for striped bass. This report deals with the gonadal material collected in 1986 and 1987 from a coordinated Maryland field program. Samples were obtained from drift gill net collections during the spawning season from four localities: Potomac Estuary, Upper Bay, Chesapeake and Delaware Canal, and the Choptank Estuary (Figure 1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Staten Island, N.Y.-N.J., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jersey City, Elizabeth, Arthur Kill, and The Narrows, 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 285 (1955), 286 (1954), 287 (1954), 745 (1956), 369 (1956), 540 (1954), 541 (1955) and 745 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

no. 1. Upper Bay; East Lower Bay.--no. 2. Atlantic Ocean.--no. 3. Arthur Kill van Kull.--no. 4. Lower East River.--no. 5. The Harlem River.--no. 6. West Lower Bay; Raritan Bay portion of Staten Island.--no. 7. Jamaica Bay drainage basin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upper Old Tampa Bay, a 17-square mile area of Old Tampa Bay, Florida, has been proposed for conversion to a fresh-water lake. The amount of runoff to the proposed lake and its chemical quality are both adequate to freshen and sustain a fresh-water lake in this part of the bay. During 1950-66 runoff to the proposed lake, including discharge from Lake Tarpon, would have averaged 134 mgd (million gallons per day) and would have displaced the volume of the proposed lake at normal pool stage (2.5 feet above mean sea level) about 1.7 times per year. Without discharge from Lake Tarpon, the volume of the proposed lake would have been displaced 1.2 times. If the lake level was initially at a normal pool stage during a critically dry year, such as 1956, the proposed lake would have declined 0.25 to 0.5 foot below the minimum design level, (1.5 feet above mean sea level). (44 page document)