963 resultados para Updegraff, J. T. (Jonathan Taylor), 1822-1882.
Resumo:
"Published by order of Congress."
Resumo:
We set out aspects of a numerical algorithm used in solving the full-dimensionality time-dependent Schrodinger equation describing the electronic motion of the hydrogen molecular ion driven by an intense, linearly polarized laser pulse aligned along the molecular axis. This algorithm has been implemented within the fixed inter-nuclear separation approximation in a parallel computer code, a brief summary of which is given. Ionization rates are calculated and compared with results from other methods, notably the time-independent Floquet method. Our results compare very favourably with the precise predictions of the Floquet method, although there is some disagreement with other wavepacket calculations. Visualizations of the electron dynamics are also presented in which electron rescattering is observed.
Resumo:
We report calculations of double ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two electron time-dependent Schr¨odinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly-ionizing wavepackets from different recollision events populate the same spatial hemisphere.
Resumo:
The surface modification of a mechanochemically prepared Ag/Al O catalyst compared with catalysts prepared by standard wet impregnated methods has been probed using two-dimensional T -T NMR correlations, HO temperature programmed desorption (TPD) and DRIFTS. The catalysts were examined for the selective catalytic reduction of NO using n-octane in the presence and absence of H. Higher activities were observed for the ball milled catalysts irrespective of whether H was added. This higher activity is thought to be related to the increased affinity of the catalyst surface towards the hydrocarbon relative to water, following mechanochemical preparation, resulting in higher concentrations of the hydrocarbon and lower concentrations of water at the surface. DRIFTS experiments demonstrated that surface isocyanate was formed significantly quicker and had a higher surface concentration in the case of the ball milled catalyst which has been correlated with the stronger interaction of the n-octane with the surface. This increased interaction may also be the cause of the reduced activation barrier measured for this catalyst compared with the wet impregnated system. The decreased interaction of water with the surface on ball milling is thought to reduce the effect of site blocking whilst still providing a sufficiently high surface concentration of water to enable effective hydrolysis of the isocyanate to form ammonia and, thereafter, N. This journal is © The Royal Society of Chemistry.
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL