632 resultados para Unstructured
Resumo:
This thesis aims at developing a better understanding of unstructured strategic decision making processes and the conditions for achieving successful decision outcomes. Specifically it focuses on the processes used to make CRE (Corporate Real Estate) decisions. The starting point for this thesis is that our knowledge of such processes is incomplete. A comprehensive study of the most recent CRE literature together with Behavioural Organization Theory has provided a research framework for the exploration of CRE recommended =best practice‘, and of how organizational variables impact on and shape these practices. To reveal the fundamental differences between CRE decision-making in practice and the prescriptive =best practice‘ advocated in the CRE literature, a study of seven Italian management consulting firms was undertaken addressing the aspects of content and process of decisions. This thesis makes its primary contribution by identifying the importance and difficulty of finding the right balance between problem complexity, process richness and cohesion to ensure a decision-making process that is sufficiently rich and yet quick enough to deliver a prompt outcome. While doing so, this research also provides more empirical evidence to some of the most established theories of decision-making while reinterpreting their mono-dimensional arguments in a multi-dimensional model of successful decision-making.
Resumo:
The author aims at developing a better understanding of unstructured strategic decision making processes and the conditions for achieving successful decision outcomes. Specifically he investigates the processes used to make CRE (Corporate Real Estate) decisions. To reveal the fundamental differences between CRE decision-making in practice and the prescriptive ‘best practice’ advocated in the CRE literature, a study of seven leading Italian management consulting firms is undertaken addressing the aspects of content and process of decisions. This research makes its primary contribution by identifying the importance and difficulty of finding the right balance between problem complexity, process richness and cohesion to ensure a decision-making process that is sufficiently rich and yet quick enough to deliver a prompt outcome. While doing so, the study also provides more empirical evidence to some of the most established theories of decision-making, while reinterpreting their mono-dimensional arguments in a multi-dimensional model of successful decision-making.
Resumo:
We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.
Resumo:
This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.
Resumo:
A BPMN model is well-structured if splits and joins are always paired into single-entry-single-exit blocks. Well-structuredness is often a desirable property as it promotes readability and makes models easier to analyze. However, many process models found in practice are not well-structured, and it is not always feasible or even desirable to restrict process modelers to produce only well-structured models. Also, not all processes can be captured as well-structured process models. An alternative to forcing modelers to produce well-structured models, is to automatically transform unstructured models into well-structured ones when needed and possible. This talk reviews existing results on automatic transformation of unstructured process models into structured ones.
Resumo:
Process models define allowed process execution scenarios. The models are usually depicted as directed graphs, with gateway nodes regulating the control flow routing logic and with edges specifying the execution order constraints between tasks. While arbitrarily structured control flow patterns in process models complicate model analysis, they also permit creativity and full expressiveness when capturing non-trivial process scenarios. This paper gives a classification of arbitrarily structured process models based on the hierarchical process model decomposition technique. We identify a structural class of models consisting of block structured patterns which, when combined, define complex execution scenarios spanning across the individual patterns. We show that complex behavior can be localized by examining structural relations of loops in hidden unstructured regions of control flow. The correctness of the behavior of process models within these regions can be validated in linear time. These observations allow us to suggest techniques for transforming hidden unstructured regions into block-structured ones.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4 center dot Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.
Resumo:
This work describes the parallelization of High Resolution flow solver on unstructured meshes, HIFUN-3D, an unstructured data based finite volume solver for 3-D Euler equations. For mesh partitioning, we use METIS, a software based on multilevel graph partitioning. The unstructured graph used for partitioning is associated with weights both on its vertices and edges. The data residing on every processor is split into four layers. Such a novel procedure of handling data helps in maintaining the effectiveness of the serial code. The communication of data across the processors is achieved by explicit message passing using the standard blocking mode feature of Message Passing Interface (MPI). The parallel code is tested on PACE++128 available in CFD Center
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.