900 resultados para Universal tree
Resumo:
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Resumo:
Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an endosymbiotic bacterium.
Resumo:
The extent to which lateral genetic transfer has shaped microbial genomes has major implications for the emergence of community structures. We have performed a rigorous phylogenetic analysis of > 220,000 proteins from genomes of 144 prokaryotes to determine the contribution of gene sharing to current prokaryotic diversity, and to identify highways of sharing between lineages. The inferred relationships suggest a pattern of inheritance that is largely vertical, but with notable exceptions among closely related taxa, and among distantly related organisms that live in similar environments.
Resumo:
The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.
Resumo:
Yellows diseases associated with phytoplasmas cause high mortality in China-tree (Melia azedarach) in Argentina, but there has been no previous large-scale survey to determine their diversity and geographical distribution. To assess the presence and identity of phytoplasmas affecting this species throughout the country, 425 samples of symptomatic trees collected at different geographic locations were analysed by a polymerase chain reaction (using universal and group-specific primers) and restriction fragment length polymorphism. Phytoplasmas belonging to 16SrIII-B group were detected at almost every location sampled, whereas 16SrXIII-C group phytoplasmas, reported for the first time in Argentina, were only found in two regions sharing similar agro-ecological characteristics (Northeast provinces and Tucuman). Double infections with 16SrIII-B and 16SrXIII-C group phytoplasmas were also recorded. Nucleotide sequencing of the 16S rDNA of three Argentinian 16SrXIII-C group phytoplasma isolates revealed high identity (99.6-99.3%) with the CbY1 isolate reported from Bolivia.
Resumo:
Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.
Resumo:
Background Cost-effectiveness studies have been increasingly part of decision processes for incorporating new vaccines into the Brazilian National Immunisation Program. This study aimed to evaluate the cost-effectiveness of 10-valent pneumococcal conjugate vaccine (PCV10) in the universal childhood immunisation programme in Brazil. Methods A decision-tree analytical model based on the ProVac Initiative pneumococcus model was used, following 25 successive cohorts from birth until 5 years of age. Two strategies were compared: (1) status quo and (2) universal childhood immunisation programme with PCV10. Epidemiological and cost estimates for pneumococcal disease were based on National Health Information Systems and literature. A 'top-down' costing approach was employed. Costs are reported in 2004 Brazilian reals. Costs and benefits were discounted at 3%. Results 25 years after implementing the PCV10 immunisation programme, 10 226 deaths, 360 657 disability-adjusted life years (DALYs), 433 808 hospitalisations and 5 117 109 outpatient visits would be avoided. The cost of the immunisation programme would be R$10 674 478 765, and the expected savings on direct medical costs and family costs would be R$1 036 958 639 and R$209 919 404, respectively. This resulted in an incremental cost-effectiveness ratio of R$778 145/death avoided and R$22 066/DALY avoided from the society perspective. Conclusion The PCV10 universal infant immunisation programme is a cost-effective intervention (1-3 GDP per capita/DALY avoided). Owing to the uncertain burden of disease data, as well as unclear long-term vaccine effects, surveillance systems to monitor the long-term effects of this programme will be essential.
Resumo:
INTRODUCTION Every joint registry aims to improve patient care by identifying implants that have an inferior performance. For this reason, each registry records the implant name that has been used in the individual patient. In most registries, a paper-based approach has been utilized for this purpose. However, in addition to being time-consuming, this approach does not account for the fact that failure patterns are not necessarily implant specific but can be associated with design features that are used in a number of implants. Therefore, we aimed to develop and evaluate an implant product library that allows both time saving barcode scanning on site in the hospital for the registration of the implant components and a detailed description of implant specifications. MATERIALS AND METHODS A task force consisting of representatives of the German Arthroplasty Registry, industry, and computer specialists agreed on a solution that allows barcode scanning of implant components and that also uses a detailed standardized classification describing arthroplasty components. The manufacturers classified all their components that are sold in Germany according to this classification. The implant database was analyzed regarding the completeness of components by algorithms and real-time data. RESULTS The implant library could be set up successfully. At this point, the implant database includes more than 38,000 items, of which all were classified by the manufacturers according to the predefined scheme. Using patient data from the German Arthroplasty Registry, several errors in the database were detected, all of which were corrected by the respective implant manufacturers. CONCLUSIONS The implant library that was developed for the German Arthroplasty Registry allows not only on-site barcode scanning for the registration of the implant components but also its classification tree allows a sophisticated analysis regarding implant characteristics, regardless of brand or manufacturer. The database is maintained by the implant manufacturers, thereby allowing registries to focus their resources on other areas of research. The database might represent a possible global model, which might encourage harmonization between joint replacement registries enabling comparisons between joint replacement registries.