941 resultados para United States. Atlantic Command
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"5 January 1990."
Resumo:
"8181/CISA"--Appendix C, cover.
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
In recent decades, hatchery-growout culture of oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, has been commercially successful in Atlantic United States and oysters in Atlantic Canada. Culturists have not had success, as yet, with northern bay scallops, Argopecten irradians irradians. Large mortalities occur during the culture process, mainly because the scallops are relatively delicate and some die when handled. In addition, too little edible meat, i.e. the adductor muscle, is produced for the culture operation to be profitable. However, three companies, one in Massachusetts, one in New Brunswick, and one on Prince Edward Island, Canada, have discovered that they can produce bay scallops successfully by harvesting them when partially-to fully-grown and selling them whole. In restaurants, the scallops are cooked and served with all their meats (adductor muscles and rims) and also with the shells, which have been genetically-bred for bright colors. The scallop seed are produced in hatcheries and then grown in lantern or pearl nets and cages to market size. Thus far, production has been relatively small, just beyond the pilot-scale, until a larger demand develops for this product.
Resumo:
The life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) was described from 1093 specimens collected from Virginia to northern Florida between April 1997 and March 1999. Longitudinally sectioned vertebral centra were used to age each specimen, and the periodicity of circuli deposition was verified through marginal increment analysis and focus-to-increment frequency distributions. Rhizoprionodon terraenovae reached a maximum size of 828 mm precaudal length (PCL) and a maximum age of 11+ years. Mean back-calculated lengths-at-age ranged from 445 mm PCL at age one to 785 mm PCL at age ten for females, and 448 mm PCL at age one to 747 mm PCL at age nine for males. Observed lengthat-age data (estimated to 0.1 year) yielded the following von Bertalanffy parameters estimates: L∞= 749 mm PCL (SE=4.60), K = 0.49 (SE=0.020), and t0= –0.94 (SE=0.046) for females; and L∞= 745 mm PCL (SE = 5.93), K = 0.50 (SE=0.024), and t0= –0.91 (SE = 0.052) for males. Sexual maturity was reached at age three and 611 mm PCL for females, and age three and 615 mm PCL for males. Rhizoprionodon terraenovae reproduced annually and had a gestation period of approximately 11 months. Litter size ranged from one to eight (mean=3.85) embyros, and increased with female PCL.
Resumo:
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.
Resumo:
This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.
Resumo:
The identification of megalopae from plankton samples is difficult, because this larval stage is the least well known among crab larvae, unknown in some species and poorly described in others. Wild megalopa specimens of some swimming crabs (family Portunidae Rafinesque, 1815) were captured alive from neuston samples obtained during summer surveys near the coast of Charleston, South Carolina (U.S.A). For identification purposes, larvae were reared to the 8th juvenile instar. After reaching the 5th juvenile instar, the juvenile crabs exhibited morphological features suitable for identification to the species level. The specimens belonged to two species of Portunidae, Portunus spinimanus Latreille, 1819 and P. gibbesii (Stimpson, 1859). Their megalopae were described in detail and compared to other portunid megalopae known from the southeastern Atlantic coast of the U.S.A. Species-specific characters of portunid megalopae are the number of carpal spines on the chelipeds, the relative size of the sternal spines (7th sternite), the number of antennal flagellum segments, and the setation of mouthparts. Copyright © 2007 Magnolia Press.
Resumo:
v.19:no.2 (1897)