987 resultados para Unified Modelling Language
Resumo:
Tämä diplomityökuuluu tietoliikenneverkkojen suunnittelun tutkimukseen ja pohjimmiltaan kohdistuu verkon mallintamiseen. Tietoliikenneverkkojen suunnittelu on monimutkainen ja vaativa ongelma, joka sisältää mutkikkaita ja aikaa vieviä tehtäviä. Tämä diplomityö esittelee ”monikerroksisen verkkomallin”, jonka tarkoitus on auttaa verkon suunnittelijoita selviytymään ongelmien monimutkaisuudesta ja vähentää verkkojen suunnitteluun kuluvaa aikaa. Monikerroksinen verkkomalli perustuu yleisille objekteille, jotka ovat yhteisiä kaikille tietoliikenneverkoille. Tämä tekee mallista soveltuvan mielivaltaisille verkoille, välittämättä verkkokohtaisista ominaisuuksista tai verkon toteutuksessa käytetyistä teknologioista. Malli määrittelee tarkan terminologian ja käyttää kolmea käsitettä: verkon jakaminen tasoihin (plane separation), kerrosten muodostaminen (layering) ja osittaminen (partitioning). Nämä käsitteet kuvataan yksityiskohtaisesti tässä työssä. Monikerroksisen verkkomallin sisäinen rakenne ja toiminnallisuus ovat määritelty käyttäen Unified Modelling Language (UML) -notaatiota. Tämä työ esittelee mallin use case- , paketti- ja luokkakaaviot. Diplomityö esittelee myös tulokset, jotka on saatu vertailemalla monikerroksista verkkomallia muihin verkkomalleihin. Tulokset osoittavat, että monikerroksisella verkkomallilla on etuja muihin malleihin verrattuna.
Resumo:
Speaker(s): Prof. Steffen Staab Organiser: Dr Tim Chown Time: 23/05/2014 10:30-11:30 Location: B53/4025 Abstract The Web is constructed based on our experiences in a multitude of modalities: text, networks, images, physical locations are some examples. Understanding the Web requires from us that we can model these modalities as they appear on the Web. In this talk I will show some examples of how we model text, hyperlink networks and physical-social systems in order to improve our understanding and our use of the Web.
Resumo:
Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.
Resumo:
Much consideration is rightly given to the design of metadata models to describe data. At the other end of the data-delivery spectrum much thought has also been given to the design of geospatial delivery interfaces such as the Open Geospatial Consortium standards, Web Coverage Service (WCS), Web Map Server and Web Feature Service (WFS). Our recent experience with the Climate Science Modelling Language shows that an implementation gap exists where many challenges remain unsolved. To bridge this gap requires transposing information and data from one world view of geospatial climate data to another. Some of the issues include: the loss of information in mapping to a common information model, the need to create ‘views’ onto file-based storage, and the need to map onto an appropriate delivery interface (as with the choice between WFS and WCS for feature types with coverage-valued properties). Here we summarise the approaches we have taken in facing up to these problems.
Resumo:
Pode-se afirmar que a evolução tecnológica (desenvolvimento de novos instrumentos de medição como, softwares, satélites e computadores, bem como, o barateamento das mídias de armazenamento) permite às Organizações produzirem e adquirirem grande quantidade de dados em curto espaço de tempo. Devido ao volume de dados, Organizações de pesquisa se tornam potencialmente vulneráveis aos impactos da explosão de informações. Uma solução adotada por algumas Organizações é a utilização de ferramentas de sistemas de informação para auxiliar na documentação, recuperação e análise dos dados. No âmbito científico, essas ferramentas são desenvolvidas para armazenar diferentes padrões de metadados (dados sobre dados). Durante o processo de desenvolvimento destas ferramentas, destaca-se a adoção de padrões como a Linguagem Unificada de Modelagem (UML, do Inglês Unified Modeling Language), cujos diagramas auxiliam na modelagem de diferentes aspectos do software. O objetivo deste estudo é apresentar uma ferramenta de sistemas de informação para auxiliar na documentação dos dados das Organizações por meio de metadados e destacar o processo de modelagem de software, por meio da UML. Será abordado o Padrão de Metadados Digitais Geoespaciais, amplamente utilizado na catalogação de dados por Organizações científicas de todo mundo, e os diagramas dinâmicos e estáticos da UML como casos de uso, sequências e classes. O desenvolvimento das ferramentas de sistemas de informação pode ser uma forma de promover a organização e a divulgação de dados científicos. No entanto, o processo de modelagem requer especial atenção para o desenvolvimento de interfaces que estimularão o uso das ferramentas de sistemas de informação.
Resumo:
The modelling of critical infrastructures (CIs) is an important issue that needs to be properly addressed, for several reasons. It is a basic support for making decisions about operation and risk reduction. It might help in understanding high-level states at the system-of-systems layer, which are not ready evident to the organisations that manage the lower level technical systems. Moreover, it is also indispensable for setting a common reference between operator and authorities, for agreeing on the incident scenarios that might affect those infrastructures. So far, critical infrastructures have been modelled ad-hoc, on the basis of knowledge and practice derived from less complex systems. As there is no theoretical framework, most of these efforts proceed without clear guides and goals and using informally defined schemas based mostly on boxes and arrows. Different CIs (electricity grid, telecommunications networks, emergency support, etc) have been modelled using particular schemas that were not directly translatable from one CI to another. If there is a desire to build a science of CIs it is because there are some observable commonalities that different CIs share. Up until now, however, those commonalities were not adequately compiled or categorized, so building models of CIs that are rooted on such commonalities was not possible. This report explores the issue of which elements underlie every CI and how those elements can be used to develop a modelling language that will enable CI modelling and, subsequently, analysis of CI interactions, with a special focus on resilience
Resumo:
Systems of Systems (SoS) present challenging features and existing tools result often inadequate for their analysis, especially for heteregeneous networked infrastructures. Most accident scenarios in networked systems cannot be addressed by a simplistic black or white (i.e. functioning or failed) approach. Slow deviations from nominal operation conditions may cause degraded behaviours that suddenly end up into unexpected malfunctioning, with large portions of the network affected. In this paper,we present a language for modelling networked SoS. The language makes it possible to represent interdependencies of various natures, e.g. technical, organizational and human. The representation of interdependencies is based on control relationships that exchange physical quantities and related information. The language also makes it possible the identification of accident scenarios, by representing the propagation of failure events throughout the network. The results can be used for assessing the effectiveness of those mechanisms and measures that contribute to the overall resilience, both in qualitative and quantitative terms. The presented modelling methodology is general enough to be applied in combination with already existing system analysis techniques, such as risk assessment, dependability and performance evaluation
Resumo:
This paper focuses on a problem of Grid system decomposition by developing its object model. Unified Modelling Language (UML) is used as a formalization tool. This approach is motivated by the complexity of the system being analysed and the need for simulation model design.
A framework for transforming, analyzing, and realizing software designs in unified modeling language
Resumo:
Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H1 and H2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H1 and H2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H1 and H2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H1, while for H2, it was 0.23%; indicating the system efficiency in decision-making.
Resumo:
Die Modellierung und Spezifikation von Manufacturing Execution Systems (MES) als prozessnah operierende Software-Systeme stellt eine Herausforderung interdisziplinärer Kommunikation dar. Bisher existiert kein grafisches Beschreibungsmittel, das diesen Prozess ausdrücklich unterstützt. In diesem Diskussionspapier werden bestehende Beschreibungsmittel aus angrenzenden Bereichen, wie die Business Process Modeling Notation, Petrinetze, die formalisierte Prozessbeschreibung oder die Unified Modelling Language anhand allgemeiner und MES-spezifischer Anforderungen auf ihre Eignung untersucht. Es wurden erhebliche Lücken bei der Erfüllung der Anforderungen durch bestehende Beschreibungsmittel identifiziert.
Resumo:
This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H-1 and H-2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H-1 and H-2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H-1 and H-2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H-1, while for H-2, it was 0.23%; indicating the system efficiency in decision-making.