991 resultados para Ultrafine grains


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4 µm. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10¯4 to 10¯11. The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports the processing-microstructure-property correlation of novel HA-BaTiO3-based piezobiocomposites, which demonstrated the bone-mimicking functional properties. A series of composites of hydroxyapatite (HA) with varying amounts of piezoelectric BaTiO3 (BT) were optimally processed using uniquely designed multistage spark plasma sintering (SPS) route. Transmission electron microscopy imaging during in situ heating provides complementary information on the real-time observation of sintering behavior. Ultrafine grains (0.50m) of HA and BT phases were predominantly retained in the SPSed samples. The experimental results revealed that dielectric constant, AC conductivity, piezoelectric strain coefficient, compressive strength, and modulus values of HA-40wt% BT closely resembles with that of the natural bone. The addition of 40wt% BT enhances the long-crack fracture toughness, compressive strength, and modulus by 132%, 200%, and 165%, respectively, with respect to HA. The above-mentioned exceptional combination of functional properties potentially establishes HA-40wt% BT piezocomposite as a new-generation composite for orthopedic implant applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructure evolution of martensitic Ti-6Al-4V alloy was investigated through uniaxial hot compression at 700°C and a strain rate of 10-3 s-1. A combination of scanning electron microscopy observation in conjunction with high resolution electron back scattered diffraction (EBSD) was used to characterize the microstructure in detail. The development of the microstructure displayed continuous fragmentation of martensitic laths with increasing strain (i.e. continuous dynamic recrystallization), concurrently with decomposition of supersaturated martensite resulting in the formation of equiaxed grains. At a strain of 0.8, an ultrafine equiaxed grained structure with mostly high angle grain boundaries was successfully obtained. The current work proposes a novel approach to produce equiaxed ultrafine grains in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. © (2014) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C-22.3Mn-0.19Si-0.14Ni-0.27Cr (wt. %) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the deformation mechanism as a function of accumulated strain and processing parameters. The relationship between the microstructures after different deformation schedules of ECAP at the temperatures of 200, 300 and 400oC, strain hardening behavior and mechanical properties was studied. The best balance between strength and ductility (1702 MPa and 24%) was found after 2 passes at 400oC and 300oC of ECAP. It was due to the formation of deformation microbands and twins in the microstructure. The twinning was observed after all deformation schedules except after 1 pass at 400oC. The important finding was the formation of twins in the ultrafine grains. Moreover, the stacking faults were observed in the subgrains with the size of 50nm. It is also worth mentioning the formation of nano- twins within the micro-twins at the same time. It was found that the deformation schedule affects the dislocation substructure with formation of deformation bands, cells, subgrains, two variants of twins that, in turn, influence the strain-hardening behavior and mechanical properties. Keywords: Twinning Induced Plasticity steels; Equal Channel Angular Pressing; mechanical properties; transmission electron microscopy; micro/nano twins; dislocation substructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study a gradient grain structure was produced by processing rod billets through three roll planetary milling (also known as PSW process). This kind of gradient structure is reported to provide an excellent combination of strength and ductility owing to an ultrafine-grained surface layer and a coarse-grained interior of the billet. Specifically, copper rod samples were subjected to up to six passes of PSW at room temperature. To study the evolution of the microstructure during the deformation, microhardness measurements and Electron Backscatter Diffraction (EBSD) analysis were performed after one, three and six passes. Additionally, the distributions of the equivalent stress during PSW and the equivalent strain after processing were studied by finite element analysis using the commercial software QFORM. The results showed the efficacy of PSW as a means of imparting a gradient ultrafine-grained structure to copper rods. A good correlation between the simulated equivalent strain distribution and the measured microhardness distribution was demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal in the heat treatment or thermomechanical processing of steel is to improve the mechanical properties. For structural steel applications the general aim is to refine the ferrite grain size as this is the only method that improves both the strength and toughness simultaneously. For conventional hot rolling and accelerated cooling processes, it is difficult to refine the grain size below 5. μm without extensive alloying. However, it has been found that inducing transformation during deformation (i.e. dynamic transformation) can lead to grain sizes of the order of 1. μm, even in very simple steel compositions. The exact mechanism(s) for this transformation process are still being debated, and this has also been complicated by recent studies where such grain sizes can be obtained by static transformation from austenite that has been heavily deformed at low temperatures prior to the transformation. This chapter reviews the various major studies related in particular to dynamic transformation and considers the contributions from the deformed austenite structure developed prior to the transformation and the potential for dynamic recrystallisation of the ferrite. A key factor is proposed to be the early three-dimensional impingement of the ferrite which also provides an insight into cases where ultrafine grains are achieved statically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development behaviors of ultrafine grains (UFGs) due to continuous dynamic recrystallization (cDRX) were investigated in hot compression of a Mg-4Y-2Nd-0.2Zn-0.5Zr alloy pretreated in solution and subsequently peak-aging. In the aging sample containing statically precipitated particles (SPPs), the occurrence of cDRX starts to take place at medium to high strains, and finally a stable size of UFGs are fully developed in a whole volume. In the as-solution sample with no SPPs, by contrast, the size of UFGs evolved increases rapidly at lower strains, slowly at medium strains and then finally shows a bimodal distribution in high strain. In the latter, smaller grains accompanying with an incomplete formation of UFGs are developed by any effect of dynamically precipitated particles (DPPs). The microtexture evolved is effectively randomized in the regions of UFGs, leading to the formation of a weaker texture. The tensile elongation of the aging sample, with SPPs and fully developed UFGs, was around 17.4%. This was much higher than that of the as-solution one, with no SPPs and incompletely developed UFGs, that was 11.8%, which might result from the more randomized texture due to fully developed UFGs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite being highly bioactive and biocompatible, the limitations of monolithic hydroxyapatite (HA) include extremely low fracture toughness, poor electrical conductivity. While addressing these issues, the present study demonstrates how CaTiO3 (CT) addition to HA can be utilized to obtain a combination of long crack fracture toughness (1.7 MPa m(1/2) SEVNB technique) and flexural strength of 98-155 MPa (3-point bending) and a moderate tensile strength (diametral compression) of 17-36 MPa. The enhancement in fracture resistance in spark plasma sintered HA-CT composites has been explained in reference to the observed twin morphology. TEM reveals the presence of twins in CT grains due to 1800 rotation about 101]. The measured properties along with our earlier reports on biocompatibility and electrical properties make HA-CT suitable for bone tissue engineering applications. When compared with other competing HA-based biocomposites, HA-CT composites are found to have a better combination of properties useful for medium load bearing implant applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments were conducted to investigate the ultrafine-grained (UFG) microstructures in the surface layer of an aluminum alloy 7075 heavily worked by ultrasonic shot peening. Conventional and high-resolution electron microscopy was performed at various depths of the deformed layer. Results showed that UFG structures were introdued into the surface layer of 62 μm thick. With increasing strain, the various microstructural features, e.g., the dislocation emission source, elongated microbands, dislocation cells, dislocation cell blocks, equiaxed submicro-, and nano-crystal grains etc., were successively produced. The grain subdivision into the subgrains was found to be the main mechanism responsible for grain refinement. The simultaneous evolution of high boundary misorientations was ascribed to the subgrain boundary rotation for accommodating further strains. Formed microstructures were highly nonequilibratory.  2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.