866 resultados para Ultimate Strength Analysis
Resumo:
The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Despite experimental evidences, the contributions of the concrete slab and composite action to the vertical shear strength of simply supported steel-concrete composite beams are not considered in current design codes, which lead to conservative designs. In this paper, the finite element method is used to investigate the flexural and shear strengths of simply supported composite beams under combined bending and shear. A three-dimensional finite element model has been developed to account for geometric and material nonlinear behavior of composite beams, and verified by experimental results. The verified finite element model is than employed to quantify the contributions of the concrete slab and composite action to the moment and shear capacities of composite beams. The effect of the degree of shear connection on the vertical shear strength of deep composite beams loaded in shear is studied. Design models for vertical shear strength including contributions from the concrete slab and composite action and for the ultimate moment-shear interaction ate proposed for the design of simply supported composite beams in combined bending and shear. The proposed design models provide a consistent and economical design procedure for simply supported composite beams.
Resumo:
Test results of 24 reinforced concrete wall panels in one-way in-plane action are presented. The panels were loaded at a small eccentricity to reflect possible eccentric loading in practice. Influences of slenderness ratio, aspect ratio, vertical steel, and horizontal steel on the ultimate load are studied. An empirical equation modifying two existing methods is proposed for the prediction of ultimate load. The modified equation includes the effects of slenderness ratio, amount of vertical steel, and aspect ratio. The results predicted by the proposed modified method and five other available equations are compared with 48 test data. The proposed modified equation is found to be satisfactory and, additionally, includes the effect of aspect ratio which is not present in other methods.
Resumo:
Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.
Resumo:
Test results of 12 reinforced concrete (RC) wall panels with openings are presented. The panels have been subjected to in-plane vertical loads applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. The 12 specimens consist of two identical groups of six panels each. One group of panels is tested in one-way in-plane action (i.e., supported at top and bottom edges against lateral displacement). The second group of panels is tested in two-way in-plane action (i.e., supported on all the four edges against lateral displacement). Openings in the panels represent typical door and window openings. Cracking loads, ultimate loads, crack patterns, and lateral deflections of the panels are studied. Empirical methods have been developed for the prediction of ultimate load. Also, lateral deflections, cracking loads, and ultimate loads of identical loads tested under one-way and two-way action are compared.
Resumo:
Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.
Resumo:
Ball shear test is the most common test method used to assess the reliability of bond strength for ball grid array (BGA) packages. In this work, a combined experimental and numerical study was carried out to realize of BGA solder interface strength. Solder mask defined bond pads on the BGA substrate were used for BGA ball bonding. Different bond pad metallizations and solder alloys were used. Solid state aging at 150degC up to 1000 h has been carried out to change the interfacial microstructure. Cross-sectional studies of the solder-to-bond pad interfaces was conducted by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray (EDX) analyzer to investigate the interfacial reaction phenomena. Ball shear tests have been carried out to obtain the mechanical strength of the solder joints and to correlate shear behaviour with the interfacial reaction products. An attempt has been taken to realize experimental findings by Finite Element Analysis (FEA). It was found that intermetallic compound (IMC) formation at the solder interface plays an important role in the BGA solder bond strength. By changing the morphology and the microchemistry of IMCs, the fracture propagation path could be changed and hence, reliability could be improved
The static strength analysis of friction stir welded stiffened panels for primary fuselage structure
Resumo:
In the last 50 years, many bridges have been built as composite structures with decks of reinforced concrete that are supported by longitudinal steel beams. The presence of the longitudinal steel beams and the unloaded area of concrete slab cause the loaded deck slabs to be restrained against lateral expansion. As a result, a compressive membrane thrust is developed. In experimental tests, the authors built a series of one-third scale steel-concrete composite bridge models with several varying structural parameters, including concrete compressive strength, reinforcement percentage, and the size of steel supporting beams. After comparing the results of different models, the influence of these structural parameters on the amount of compressive membrane action in the deck slab was evaluated. Furthermore, the improvement of an existing theoretical model provided accurate predictions for the loading-carrying capacities.
Resumo:
The behaviour and design of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, is considered. The particular problem of the moment-capacity of such joints being lower than that of the cold-formed steel sections being connected because of web buckling, caused by the concentration of load transfer from the bolts, is addressed. In this paper, a combination of laboratory tests and finite element analyses is used to investigate this mode of failure. It is demonstrated that there is good agreement between the measured ultimate moment-capacity and that predicted by using the finite element method. A parametric study conducted using the finite element model shows that the moment-capacity of a practical size joint can be up to 20% lower than that of the cold-formed steel sections being connected. Web buckling so-caused must therefore be considered in the design of such connections. (C) 2003 Elsevier Ltd. All rights reserved.