978 resultados para Ubiquitin-conjugating enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infected cell protein 0 (ICP0) of herpes simplex virus 1, a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection, interacts with numerous cellular proteins and has been linked to the disruption of ND10 and degradation of several proteins. ICP0 contains a RING finger domain characteristic of a class of E3 ubiquitin ligases. We report that: (i) in infected cells, ICP0 interacts dynamically with proteasomes and is bound to proteasomes in the presence of the proteasome inhibitor MG132. Also in infected cells, cdc34, a polyubiquitinated E2 ubiquitin-conjugating enzyme, exhibits increased ICP0-dependent dynamic interaction with proteasomes. (ii) In an in vitro substrate-independent ubiquitination system, the RING finger domain encoded by exon 2 of ICP0 binds cdc34, whereas the carboxyl-terminal domain of ICP0 functions as an E3 ligase independent of the RING finger domain. The results indicate that ICP0 can act as a unimolecular E3 ubiquitin ligase and that it promotes ubiquitin-protein ligation and binds the E2 cdc34. It differs from other unimolecular E3 ligases in that the domain containing the RING finger binds E2, whereas the ligase activity maps to a different domain of the protein. The results also suggest that ICP0 shuttles between nucleus and cytoplasm as a function of its dynamic interactions with proteasomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitin-conjugating enzymes (E2 or Ubc) constitute a family of conserved proteins that play a key role in ubiquitin-dependent degradation of proteins in eukaryotes. We describe here a transgenic mouse strain where retrovirus integration into an Ubc gene, designated UbcM4, results in a recessive-lethal mutation. UbcM4 is the mouse homologue of the previously described human UbcH7 that is involved in the in vitro ubiquitination of several proteins including the tumor suppressor protein p53. The provirus is located in the first intron of the gene. When both alleles are mutated the level of steady-state mRNA is reduced by about 70%. About a third of homozygous mutant embryos die around day 11.5 of gestation. Embryos that survive that stage are growth retarded and die perinatally. The lethal phenotype is most likely caused by impairment of placenta development as this is the only organ that consistently showed pathological defects. The placental labyrinth is drastically reduced in size and vascularization is disturbed. The UbcM4 mouse mutant represents the first example in mammals of a mutation in a gene involved in ubiquitin conjugation. Its recessive-lethal phenotype demonstrates that the ubiquitin system plays an essential role during mouse development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hsubc9, a human gene encoding a ubiquitin-conjugating enzyme, has been cloned. The 18-kDa HsUbc9 protein is homologous to the ubiquitin-conjugating enzymes Hus5 of Schizosaccharomyces pombe and Ubc9 of Saccharomyces cerevisiae. The Hsubc9 gene complements a ubc9 mutation of S. cerevisiae. It has been mapped to chromosome 16p13.3 and is expressed in many human tissues, with the highest levels in testis and thymus. According to the Ga14 two-hybrid system analysis, HsUbc9 protein interacts with human recombination protein Rad51. A mouse homolog, Mmubc9, encodes an amino acid sequence that is identical to the human protein. In mouse spermatocytes, MmUbc9 protein, like Rad51 protein, localizes in synaptonemal complexes, which suggests that Ubc9 protein plays a regulatory role in meiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E6 protein of the high-risk human papillomaviruses inactivates the tumor suppressor protein p53 by stimulating its ubiquitinylation and subsequent degradation. Ubiquitinylation is a multistep process involving a ubiquitin-activating enzyme, one of many distinct ubiquitin-conjugating enzymes, and in certain cases, a ubiquitin ligase. In human papillomavirus-infected cells, E6 and the E6-associated protein are thought to act as a ubiquitin-protein ligase in the ubiquitinylation of p53. Here we describe the cloning of a human ubiquitin-conjugating enzyme that specifically ubiquitinylates E6-associated protein. Furthermore, we define the biochemical pathway of p53 ubiquitinylation and demonstrate that in vivo inhibition of various components in the pathway leads to an inhibition of E6-stimulated p53 degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V.,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of secreted and membrane proteins are translated and folded at the endoplasmic reticulum (ER), where a sophisticated quality control mechanism ensures that only correctly folded proteins exit the ER and traffic to their final destinations. On the other hand, proteins that persistently misfold are eliminated through a process known as ER associated degradation (ERAD). This involves retrotranslocation of the misfolded protein through the ER membrane, and ubiquitination in advance of degradation by cytosolic proteasomes. The process of ERAD is best described in yeast where ubiquitin conjugating enzymes Ubc6p and Ubc7p function with a limited number of E3 ubiquitin ligases to ubiquitinate misfolded proteins. Interestingly, although the mechanistic principles of ERAD have been conserved through evolution, there is increasing evidence that homologues of the yeast enzymes have gained divergent roles and novel regulatory functions in higher eukaryotes, meaning that the process in humans is more complex and involves a larger repertoire of participating proteins. Two homologues of Ubc6p have been described in humans, and have been named as Ubc6 (UBE2J2) and Ubc6e (UBE2J1). However, little work has been done on these enzymes and thus our main objective of this study was to progress the functional characterisation of these ERAD E2 conjugating enzymes. Our studies included a detailed analysis of conditions whereby these proteins are stabilised and degraded. We’ve also explored the different molecular signalling pathways that induced changes on their steady state protein levels. Furthermore, Ubc6e has a phosphorylatable serine residue at position 184. Thus, our studies also involved delineating the signalling kinases that phosphorylate Ubc6e and examining its function in ERAD. Our studies confirm that the E2 Ubc enzymes are regulated posttranslationally and may have important implications in the regulation of ERAD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitination is an essential process involved in basic biological processes such as the cell cycle and cell death. Ubiquitination is initiated by ubiquitin-activating enzymes (E1), which activate and transfer ubiquitin to ubiquitin-conjugating enzymes (E2). Subsequently, ubiquitin is transferred to target proteins via ubiquitin ligases (E3). Defects in ubiquitin conjugation have been implicated in several forms of malignancy, the pathogenesis of several genetic diseases, immune surveillance/viral pathogenesis, and the pathology of muscle wasting. However, the consequences of partial or complete loss of ubiquitin conjugation in multi-cellular organisms are not well understood. Here, we report the characterization of nba1, the sole E1 in Drosophila. We have determined that weak and strong nba1 alleluias behave genetically different and sometimes in opposing phenotypes. For example, weak uba1 alleluias protect cells from cell death whereas cells containing strong loss-of-function alleluias are highly apoptotic. These opposing phenotypes are due to differing sensitivities of cell death pathway components to ubiquitination level alterations. In addition, strong uba1 alleluias induce cell cycle arrest due to defects in the protein degradation of Cyclins. Surprisingly, clones of strong uba1 mutant alleluias stimulate neighboring wild-type tissue to undergo cell division in a non-autonomous manner resulting in severe overgrowth phenotypes in the mosaic fly. I have determined that the observed overgrowth phenotypes were due to a failure to downregulate the Notch signaling pathway in nba1 mutant cells. Aberrant Notch signaling results in the secretion of a local cytokine and activation of JAK/STAT pathway in neighboring cells. In addition, we elucidated a model describing the regulation of the caspase Dronc in surviving cells. Binding of Dronc by its inhibitor Diap1 is necessary but not sufficient to inhibit Dronc function. Ubiquitin conjugation and Uba1 function is necessary for the negative regulation of Dronc. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Doctorate degree (Ph.D.) in Biology at Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitination appears to be involved in virus particle release from infected cells. Free ubiquitin (Ub), as well as Ub covalently bound to a small fraction of p6 Gag, is detected in mature HIV particles. Here we report that the p6 region in the Pr55Gag structural precursor polyprotein binds to Tsg101, a putative Ub regulator that is involved in trafficking of plasma membrane-associated proteins. Tsg101 was found to interact with Gag in (i) a yeast two-hybrid assay, (ii) in vitro coimmunoprecipitation by using purified Pr55Gag and rabbit reticulocyte lysate-synthesized Tsg101, and (iii) in vivo in the cytoplasm of COS cells transfected with gag. The PTAPP motif [or late (L) domain] within p6, which is required for release of mature virus from the plasma membrane, was the determinant for binding Pr55Gag. The N-terminal region in Tsg101, which is homologous to the Ubc4 class of Ub-conjugating (E2) enzymes, was the determinant of interaction with p6. Mutation of Tyr-110 in Tsg101, present in place of the active-site Cys that binds Ub in E2 enzymes, and other residues unique to Tsg101, impaired p6 interaction, indicating that features that distinguish Tsg101 from active E2 enzymes were important for binding the viral protein. The results link L-domain function in HIV to the Ub machinery and a specific component of the cellular trafficking apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear translocation of NF-kappa B follows the degradation of its inhibitor, I kappa B alpha, an event coupled with stimulation-dependent inhibitor phosphorylation. Prevention of the stimulation-dependent phosphorylation of I kappa B alpha, either by treating cells with various reagents or by mutagenesis of certain putative I kappa B alpha phosphorylation sites, abolishes the inducible degradation of I kappa B alpha. Yet, the mechanism coupling the stimulation-induced phosphorylation with the degradation has not been resolved. Recent reports suggest a role for the proteasome in I kappa B alpha degradation, but the mode of substrate recognition and the involvement of ubiquitin conjugation as a targeting signal have not been addressed. We show that of the two forms of I kappa B alpha recovered from stimulated cells in a complex with RelA and p50, only the newly phosphorylated form, pI kappa B alpha, is a substrate for an in vitro reconstituted ubiquitin-proteasome system. Proteolysis requires ATP, ubiquitin, a specific ubiquitin-conjugating enzyme, and other ubiquitin-proteasome components. In vivo, inducible I kappa B alpha degradation requires a functional ubiquitin-activating enzyme and is associated with the appearance of high molecular weight adducts of I kappa B alpha. Ubiquitin-mediated protein degradation may, therefore, constitute an integral step of a signal transduction process.