994 resultados para URETHANE-ANESTHETIZED RATS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in mean arterial pressure (MAP) and heart rate (HR) in response to the activation of metabotropic receptors in the nucleus tractus solitarii (NTS) with trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-(±)-ACPD) were evaluated in conscious and anesthetized Wistar, male rats weighing 240-260 g (N = 8). The responses obtained with trans-(±)-ACPD were compared with the responses to L-glutamate (1 nmol/100 nl), since in a previous study we showed that anesthesia converted a pressor response to L-glutamate microinjected into the NTS of conscious rats to a depressor response in the same rats under urethane or chloralose anesthesia. Microinjection of 3 doses of trans-(±)-ACPD (100, 500 and 1000 pmol/100 nl) produced a dose-dependent fall in MAP (range, -20 to -50 mmHg) and HR (range, -30 to -170 bpm) under both conscious and chloralose anesthesia conditions. These data indicate that the cardiovascular responses to the activation of metabotropic receptors by trans-(±)-ACPD are not affected by chloralose anesthesia while the cardiovascular responses to the activation of excitatory amino acid (EAA) receptors by L-glutamate are significantly altered

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the caudal pressor area (CPA) in the maintenance of vasomotor tonus in anesthetized and decerebrate animals has been clearly established. In conscious animals, however, the participation of CPA in the cardiovascular control remains to be fully elucidated. In the present study, unilateral L-glutamate (L-Glu) (10 and/or 20 nmol/70 nl) microinjection into CPA, in conscious male Wistar rats (250-280 g) caused a significant increase in mean arterial blood pressure (MAP; control: 112 ± 1.9 mmHg; after 20 nmol L-Glu: 139 ± 4.5 mmHg, N = 12, P<0.05) and respiratory rate (control: 81 ± 3.5 breaths/min; after 10 nmol L-Glu: 92 ± 3 breaths/min, P<0.05; after 20 nmol L-Glu: 104 ± 5 breaths/min, N = 6, P<0.05). The subsequent anesthesia with urethane caused a significant increase in basal respiratory frequency (conscious: 81 ± 3.5 breaths/min; under urethane: 107 ± 1.3 breaths/min, N = 6, P<0.05). Anesthesia also significantly attenuated L-Glu-evoked pressor (conscious: deltaMAP = +27 mmHg; anesthetized: deltaMAP = +18 mmHg, P<0.05) and respiratory responses. These results suggest that glutamatergic receptors in the CPA are involved in cardiovascular and respiratory modulation in conscious rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA) and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv) anesthetized Wistar rats (300-350 g). In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl) induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7). A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl). However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7) or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6) was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7) and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7) when lidocaine (34 nmol/200 nl) was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rodents are most useful models to study physiological and pathophysiological processes in early development, because they are born in a relatively immature state. However, only few techniques are available to monitor non-invasively heart frequency and respiratory rate in neonatal rodents without restraining or hindering access to the animal. Here we describe experimental procedures that allow monitoring of heart frequency by electrocardiography (ECG) and breathing rate with a piezoelectric transducer (PZT) element without hindering access to the animal. These techniques can be easily installed and are used in the present study in unrestrained awake and anesthetized neonatal C57/Bl6 mice and Wistar rats between postnatal day 0 and 7. In line with previous reports from awake rodents we demonstrate that heart rate in rats and mice increases during the first postnatal week. Respiratory frequency did not differ between both species, but heart rate was significantly higher in mice than in rats. Further our data indicate that urethane, an agent that is widely used for anesthesia, induces a hypoventilation in neonates whilst heart rate remains unaffected at a dose of 1 g per kg body weight. Of note, hypoventilation induced by urethane was not detected in rats at postnatal 0/1. To verify the detected hypoventilation we performed blood gas analyses. We detected a respiratory acidosis reflected by a lower pH and elevated level in CO2 tension (pCO2) in both species upon urethane treatment. Furthermore we found that metabolism of urethane is different in P0/1 mice and rats and between P0/1 and P6/7 in both species. Our findings underline the usefulness of monitoring basic cardio-respiratory parameters in neonates during anesthesia. In addition our study gives information on developmental changes in heart and breathing frequency in newborn mice and rats and the effects of urethane in both species during the first postnatal week.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the acute effect of intracranial hypertension (ICH) on gastric tonus of anesthetized rats. Brain ventricles were cannulated bilaterally for intracerebro-ventricular pressure (ICP) monitoring and ICH induction. Next, a balloon catheter was inserted at the proximal stomach and coupled to a barostat for gastric volume (GV) monitoring by plethysmography. Arterial pressure (AP) and heart rate (HR) were monitored continuously during 80-min. After a 20-min basal period, they were submitted to control or ICH protocols. In controls, the ICP varied spontaneously up to the end. Other rats were subjected to ICP rising to 10, 20, 40 or 60 mmHg and kept at these levels for 30-min. Another group was subjected after basal period to stepwise ICH (ICP rising to 20, 40 and 60 mmHg at every 10-min interval). Next, the ICH rats were monitored for further 30-min. Other rats, previously submitted to a subdiaphragmatic vagotomy, splanchnicectomy plus ganglionectomy or their respective sham surgery, were also studied under ICH. Each subset consisted of 5-6 rats. Data were compared to respective basal values after ANOVA and Bonferroni`s test. In controls, the CV, AP, HR values remained within stable levels. Besides inducing bradycardia and arterial hypertension, ICH10 mmHg decreased GV by 14.8% at the 50-min interval. In ICH20, 40 and 60 mmHg subsets, GV decreased 14.0, 24.5 and 30.6% at the 40-min interval, respectively. In stepwise ICH rats, GV decreased 10.2% and 12.7%, respectively under ICP of 40 and 60 mmHg. The GV values remained significantly lower than basal levels during the last 30-min of monitoring. Thus, ICH decreases the GV in an ICP-dependent pattern besides inducing Cushing`s reflex. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Noradrenaline (NA), a neurotransmitter involved in central blood pressure control, is present in the rat PAG. We report here on the cardiovascular effects caused by NA microinjection into the ventrolateral PAG (vlPAG) of unanesthetized rats and the peripheral mechanism involved in their mediation. NA microinjection in the vlPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. No significant cardiovascular responses were observed in urethane-anesthetized rats. The pressor response was potentiated by pretreatment with the ganglion blocker pentolinium (5 or 10 mg/kg, intravenously). Pretreatment with the vasopressin antagonist dTyr(CH(2))(5) (Me)AVP (50 mu g/kg, intravenously) blocked the pressor response evoked by the NA microinjection into the vlPAG. Additionally, circulating vasopressin content was found to be significantly increased after NA microinjection in the vlPAG. The results suggest that activation of noradrenergic synapses within the vlPAG modulates vasopressin release in unanesthetized rats. (c) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microinjection Of L-glutamate (L-glu: 1, 3, 10 and 30nmol/100nL) into the lateral hypothalamus (LH) caused dose-related depressor and bradycardiac responses. The cardiovascular response to L-glu stimulation of the LH was blocked by pretreatment of the ventrolateral portion of the periaqueductal gray matter (vIPAG) with CoCl(2) (1 mM/100nL), indicating the existence of a synaptic relay of the hypotensive pathway in that area. Furthermore, the response to L-glu Was blocked by pretreatment of the vIPAG with 2 nmol/100 nL of the selective NMDA-receptor antagonist LY235959 and was not affected by pretreatment with 2 nmol/100 nL of the selective non-NMDA-receptor antagonist NBQX, suggesting a mediation of the hypotensive response by NMDA receptors in the APAG. In conclusion, our results indicate that the hypotensive pathway activated by microinjection Of L-glu into the LH involves a NMDA synaptic relay in the vIPAG. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: We assessed the effects of right atrial stretch on gastric tone and neuro-humoral pathways involved in this phenomenon. Main methods: Anesthetized male rats were submitted for monitoring of the mean arterial pressure (MAP) and central venous pressure (CVP). A balloon catheter positioned into the stomach monitored by plethysmography the gastric volume (GV). All rats were monitored for 55-min. After the first 20-min of monitoring (basal period), rats were either submitted to a 5-min interval of atrial stretch (AS) or maintained as controls. An intra-atrial balloon catheter was distended with 30,50, or 70 mu L of saline. GV and hemodynamic data were also monitored for a further 30-min. Another set of rats, either previously submitted to subdiaphragmaic vagotomy or splanchnicectomy plus celiac ganglionectomy or maintained as controls (sham), were also submitted to AS. Each subset consisted of six rats. The plasma level of the atrial natriuretic peptide (ANP) was measured in another group of rats. Data were compared by ANOVA followed by Bonferroni`s test. Key findings: In control rats, the GV, MAP, and CVP remained at stable levels throughout the studies. In addition to increase the CVP, AS also decreased (P<0.05) the GV by 14%, 11.5%, and 16.5% in the 30, 50, and 70 mu L groups, respectively. Vagotomy prevented the GV decrease. In contrast, the AS decreased (P<0.05) the GV by 21.3% in splanchnicectomized rats. Significance: AS decreased the GV of rats in a volume-dependent manner, a phenomenon prevented by vagotomy but enhanced by celiac ganglionectomy. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon`s horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC UP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (2540 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the role of bradykinin in the inhibitory action of captopril in hypertension induced by L-NAME in anesthetized rats. Male Wistar rats (260-320 g) were anesthetized with chloralose and arterial blood pressure was recorded with a polygraph pressure transducer. The hypertensive effect of L-NAME was studied in rats pretreated with saline, captopril or HOE 140 plus captopril. The effect of captopril was also studied during the sustained pressor effect of L-NAME. The acute pressor effect of L-NAME (10 mg/kg, iv) was significantly reduced by iv pretreatment with 2 mg/kg captopril (D increase of 49 ± 4.9 mmHg reduced to 20 ± 5.4 mmHg, P = 0.01). The pressor effect of L-NAME (D increase of 38 ± 4.8 mmHg) observed in rats pretreated with captopril and HOE 140 (0.1 mg/kg, iv) was not significantly different from that induced by L-NAME in rats pretreated with saline (P = 0.09). During the sustained pressor effect induced by L-NAME (D increase of 49 ± 4.9 mmHg) captopril induced a significant (P<0.05) reduction in arterial blood pressure (D decrease of 22 ± 3.0 mmHg). The present results demonstrate that the acute pressor effect of L-NAME is reduced by captopril and this inhibitory effect may be partly dependent on the potentiation of the vasodilator actions of bradykinin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that blood volume (BV) expansion decreases saline flow through the gastroduodenal (GD) segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990) Gut, 31: 1006-1010). The present study attempts to identify the site(s) of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g) were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O). Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min), expansion (10-15 min), and expanded (30 min). Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight) significantly (P<0.05) reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min), pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min) and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min) circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min). Prazosin (1 mg/kg) and yohimbine (3 mg/kg) prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg), hexamethonium (10 mg/kg) and propranolol (2 mg/kg) were ineffective on both circuits. These results indicate that 1) BV expansion increases the GD resistance to liquid flow, 2) pylorus and duodenum are important sites of resistance, and 3) yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.