745 resultados para URETERAL OBSTRUCTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Malignant ureteral obstruction often necessitates chronic urinary diversion and is associated with high rates of failure with traditional ureteral stents. We evaluated the outcomes of a metallic stent placed for malignant ureteral obstruction and determined the impact of risk factors previously associated with increased failure rates of traditional stents. MATERIALS AND METHODS: Patients undergoing placement of the metallic Resonance® stent for malignant ureteral obstruction at an academic referral center were identified retrospectively. Stent failure was defined as unplanned stent exchange or nephrostomy tube placement for signs or symptoms of recurrent ureteral obstruction (recurrent hydroureteronephrosis or increasing creatinine). Predictors of time to stent failure were assessed using Cox regression. RESULTS: A total of 37 stents were placed in 25 patients with malignant ureteral obstruction. Of these stents 12 (35%) were identified to fail. Progressive hydroureteronephrosis and increasing creatinine were the most common signs of stent failure. Three failed stents had migrated distally and no stents required removal for recurrent infection. Patients with evidence of prostate cancer invading the bladder at stent placement were found to have a significantly increased risk of failure (HR 6.50, 95% CI 1.45-29.20, p = 0.015). Notably symptomatic subcapsular hematomas were identified in 3 patients after metallic stent placement. CONCLUSIONS: Failure rates with a metallic stent are similar to those historically observed with traditional polyurethane based stents in malignant ureteral obstruction. The invasion of prostate cancer in the bladder significantly increases the risk of failure. Patients should be counseled and observed for subcapsular hematoma formation with this device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To assess the effects of atorvastatin (ATORV) on renal function after bilateral ureteral obstruction (BUO), measuring inulin clearance and its effect on renal hemodynamic, filtration, and inflammatory response, as well as the expression of Aquaporin-2 (AQP2) in response to BUO and after the release of BUO. METHODS Adult Munich-Wistar male rats were subjected to BUO for 24 hours and monitored during the following 48 hours. Rats were divided into 5 groups: sham operated (n = 6); sham + ATORV (n = 6); BUO (n = 6); BUO + ATORV (10 mg/kg in drinking water started 2 days before BUO [n = 5]; and BUO + ATORV (10 mg/kg in drinking water started on the day of the release of BUO [n = 5]). We measured blood pressure (BP, mm Hg); inulin clearance (glomerular filtration rate [GFR]; mL/min/100 g); and renal blood flow (RBF, mL/min, by transient-time flowmeter). Inflammatory response was evaluated by histologic analysis of the interstitial area. AQP2 expression was evaluated by electrophoresis and immunoblotting. RESULTS Renal function was preserved by ATORV treatment, even if initiated on the day of obstruction release, as expressed by GFR, measured by inulin clearance. Relative interstitial area was decreased in both BUO + ATORV groups. Urine osmolality was improved in the ATORV-treated groups. AQP2 protein expression decreased in BUO animals and was reverted by ATORV treatment. CONCLUSION ATORV administration significantly prevented and restored impairment in GFR and renal vascular resistance. Furthermore, ATORV also improved urinary concentration by reversing the BUO-induced downregulation of AQP2. These findings have significant clinical implication in treating obstructive nephropathy. UROLOGY 80: 485.e15-485.e20, 2012. (c) 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine if changes in intrarenal oxygenation during acute unilateral ureteral obstruction can be depicted with blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained from all patients. BOLD MR imaging was performed in 10 male patients (mean age, 45 years +/- 17 [standard deviation]; range, 20-73 years) with a distal unilateral ureteral calculus and in 10 healthy age-matched male volunteers to estimate R2*, which is inversely related to tissue Po(2). R2* values were determined in the cortex and medulla of the obstructed and the contralateral nonobstructed kidneys. To reduce external effects on R2*, the R2* ratio between the medulla and cortex was also analyzed. Statistical analysis was performed with nonparametric rank tests. P < .05 was considered to indicate a significant difference. RESULTS: All patients had significantly lower medullary and cortical R2* values in the obstructed kidney (median R2* in medulla, 10.9 sec(-1) [range, 9.1-14.3 sec(-1)]; median R2* in cortex, 10.4 sec(-1) [range, 9.7-11.3 sec(-1)]) than in the nonobstructed kidney (median R2* in medulla, 17.2 sec(-1) [range, 14.6-23.2 sec(-1)], P = .005; median R2* in cortex, 11.7 sec(-1) [range, 11.0-14.0 sec(-1)], P = .005); values in the obstructed kidneys were also significantly lower than values in the kidneys of healthy control subjects (median R2* in medulla, 16.1 sec(-1) [range, 13.9-18.1 sec(-1)], P < .001; median R2* in cortex, 11.6 sec(-1) [range, 10.5-12.9 sec(-1)], P < .001). R2* ratios in the obstructed kidneys (median, 1.06; range, 0.85-1.27) were significantly lower than those in the nonobstructed kidneys (median, 1.49; range, 1.26-1.71; P = .005) and those in the kidneys of healthy control subjects (median, 1.38; range, 1.23-1.47; P < .001). In contrast, R2* ratios in the nonobstructed kidneys of patients were significantly higher than those in kidneys of healthy control subjects (P = .01). CONCLUSION: Increased oxygen content in the renal cortex and medulla occurs with acute unilateral ureteral obstruction, suggesting reduced function of the affected kidney.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To prospectively assess the potential of noninvasive diffusion-weighted magnetic resonance (MR) imaging to depict changes in microperfusion and diffusion in patients with acute unilateral ureteral obstruction. MATERIALS AND METHODS: The local ethics committee approved the study protocol. Informed consent was obtained. Diffusion-weighted MR imaging was performed in 21 patients (two women, 19 men; mean age, 43 years +/- 10 [standard deviation]) with acute unilateral ureteral obstruction due to a calculus diagnosed at unenhanced computed tomography. A control group (one woman, 15 men; mean age, 44 years +/- 12) underwent the same MR protocol. Standard processing yielded an apparent diffusion coefficient (ADC) ADCT; the separation of microperfusion and diffusion contributions yielded the perfusion fraction FP and the pure diffusion coefficient ADCD. ADCT, ADCD, and FP were compared between obstructed and contralateral unobstructed kidneys and with control values. For statistical analysis, nonparametric rank tests were used. A P value of less than .05 was considered significant. RESULTS: No significant differences were observed between the ADCT of the medulla or cortex of the obstructed and unobstructed kidneys. Compared with control kidneys, only medullary ADCT was slightly increased in the obstructed kidney (P < .04). However, the ADCD in the medulla of the obstructed and unobstructed kidneys was significantly higher than that in control subjects (201 x 10(-5) mm2/sec +/- 16 and 199 x 10(-5) mm2/sec +/- 20 vs 189 x 10(-5) mm2/sec +/- 12; P < .008 and P < .03, respectively). FP of the cortex of the obstructed kidney was significantly lower than that in the unobstructed kidney (20.2% +/- 4.8 vs 24.0% +/- 5.8; P < .002); FP of the medulla was slightly lower in the obstructed kidney than in the unobstructed kidney (18.3% +/- 5.9 vs 20.7% +/- 6.4; P = .05). CONCLUSION: Diffusion-weighted MR imaging allows noninvasive detection of changes in renal perfusion and diffusion during acute unilateral ureteral obstruction, as exemplified in patients with a ureteral calculus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The end point of immune and nonimmune renal injury typically involves glomerular and tubulointerstitial fibrosis. Although numerous studies have focused on the events that lead to renal fibrosis, less is known about the mechanisms that promote cellular repair and tissue remodeling. Described is a model of renal injury and repair after the reversal of unilateral ureteral obstruction (UUO) in male C57b1/6J mice. Male mice (20 to 25 g) underwent 10 d of UUO with or without 1, 2, 4, or 6 wk of reversal of UUO (R-UUO). UUO resulted in cortical tubular cell atrophy and tubular dilation in conjunction with an almost complete ablation of the outer medulla. This was associated with interstitial macrophage infiltration; increased hydroxyproline content; and upregulated type I, III, IV, and V collagen expression. The volume density of kidney occupied by renal tubules that exhibited a brush border was measured as an assessment of the degree of repair after R-UUO. After 6 wk of R-UUO, there was an increase in the area of kidney occupied by repaired tubules (83.7 +/- 5.9%), compared with 10 d UUO kidneys (32.6 +/- 7.3%). This coincided with reduced macrophage numbers, decreased hydroxyproline content, and reduced collagen accumulation and interstitial matrix expansion, compared with obstructed kidneys from UUO mice. GFR in the 6-wk R-UUO kidneys was restored to 43 to 88% of the GFR in the contralateral unobstructed kidneys. This study describes the regenerative potential of the kidney after the established interstitial matrix expansion and medullary ablation associated with UUO in the adult mouse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. Materials and Methods: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. Results: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. Conclusions: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pro-fibrotic role of matrix metalloproteinase-9 (MMP-9) in tubular cell epithelial-mesenchymal transition (EMT) is well established in renal fibrosis; however studies from our group and others have demonstrated some previously unrecognized complexity of MMP-9 that has been overlooked in renal fibrosis. Therefore, the aim of this study was to determine the expression pattern, origin and the exact mechanism underlying the contribution of MMP-9 to unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis via MMP-9 inhibition. Renal MMP-9 expression in BALB/c mice with UUO was examined on day 1, 3, 5, 7, 9, 11 and 14. To inhibit MMP-9 activity, MMP-2/9 inhibitor or MMP-9-neutralizing antibody was administered daily for 4 consecutive days from day 0-3, 6-9 or 10-13 and tissues harvested at day 14. In UUO, there was a bi-phasic early- and late-stage upregulation of MMP-9 activity. Interestingly, tubular epithelial cells (TECs) were the predominant source of MMP-9 during early stage, whereas TECs, macrophages and myofibroblasts produced MMP-9 during late-stage UUO. Early- and late-stage inhibition of MMP-9 in UUO mice significantly reduced tubular cell EMT and renal fibrosis. Moreover, MMP-9 inhibition caused a significant reduction in MMP-9-cleaved osteopontin and macrophage infiltration in UUO kidney. Our in vitro study showed MMP-9-cleaved osteopontin enhanced macrophage transwell migration and MMP-9 of both primary TEC and macrophage induced tubular cell EMT. In summary, our result suggests that MMP-9 of both TEC and macrophage origin may directly or indirectly contribute to the pathogenesis of renal fibrosis via osteopontin cleavage, which, in turn further recruit macrophage and induce tubular cell EMT. Our study also highlights the time dependency of its expression and the potential of stage-specific inhibition strategy against renal fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased expression of Induced-by-High-Glucose 1 (IHG-1) associates with tubulointerstitial fibrosis in diabetic nephropathy. IHG-1 amplifies TGF-ß1 signaling, but the functions of this highly-conserved protein are not well understood. IHG-1 contains a putative mitochondrial-localization domain, and here we report that IHG-1 is specifically localized to mitochondria. IHG-1 overexpression increased mitochondrial mass and stabilized peroxisome proliferator-activated receptor ? coactivator-1a (PGC-1a). Conversely, inhibition of IHG-1 expression decreased mitochondrial mass, downregulated mitochondrial proteins, and PGC-1a-regulated transcription factors, including nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM), and reduced activity of the TFAM promoter. In the unilateral ureteral obstruction model, we observed higher PGC-1a protein expression and IHG-1 levels with fibrosis. In a gene-expression database, we noted that renal biopsies of human diabetic nephropathy demonstrated higher expression of genes encoding key mitochondrial proteins, including cytochrome c and manganese superoxide dismutase, compared with control biopsies. In summary, these data suggest that IHG-1 increases mitochondrial biogenesis by promoting PGC-1a-dependent processes, potentially contributing to the pathogenesis of renal fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-ß1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-ß1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-ß1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-ß1 signaling pathway, including the TGF-ß receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-ß receptor type 1 and the response to TGF-ß1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-ß1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’inflammation fait partie des processus réactionnels de défense dont dispose l’organisme en réponse aux agressions, assurant l’intégrité de l’hôte. En réponse au dommage tissulaire, plusieurs médiateurs inflammatoires interviennent dans le processus de l’inflammation. Lors de ces dommages, des signaux de dangers provenant de cellules endommagées sont relâchés dans l’environnement tissulaire, pouvant causer des dommages cellulaires et tissulaires. Les macrophages, tout comme d’autres cellules, peuvent être activés par ces signaux de danger, menant à la sécrétion de molécules telles que des cytokines et des chimiokines pouvant modifier le microenvironnement tissulaire. Les insultes au tissu sain peuvent entrainer la mort cellulaire telle que l’apoptose. Les molécules pouvant être relâchées lors de celle-ci contribuent au microenvironnement, notamment de par l’influence de celles-ci sur le macrophage. Parmi ces médiateurs, nous avons identifié le Milk Fat Globule-Epidermal growth factor 8 (MFG-E8), un acteur important dans la résolution de l’inflammation, comme étant relâché spécifiquement par les cellules apoptotiques. Nous avons émis l’hypothèse que le microenvironnement apoptotique tissulaire, via la relâche de MFG-E8, module le phénotype du macrophage, modifiant le microenvironnement, la réponse inflammatoire ainsi que le devenir de l’insulte tissulaire. Nos objectifs sont 1) de caractériser ce microenvironnement apoptotique tissulaire et la cinétique de relâche du MFG-E8 par les cellules apoptotiques, 2) d’en évaluer son rôle dans la modulation du phénotype du macrophage ainsi que 3) d’en étudier, in vivo, son influence sur l’environnement inflammatoire et le devenir tissulaire. Dans le premier article présenté, nous avons démontré que les cellules endothéliales apoptotiques relâchent le MFG-E8 de façon Caspase-3 dépendante. La stimulation des macrophages par l’environnement conditionné par les cellules endothéliales apoptotiques mène à l’adoption d’un profil macrophagien davantage anti-inflammatoire et moindrement pro-inflammatoire. Ce phénotype est réduit par l’inhibition de la Caspase-3 et il dépend de la présence de MFG-E8. De plus, le potentiel du MFG-E8 à la reprogrammation du macrophage pro-inflammatoire a été démontré via un modèle expérimental de péritonite. Ce changement phénotypique médié par MFG-E8 implique une signalisation STAT3. Ayant démontré que les cellules épithéliales apoptotiques, à l’instar des cellules endothéliales apoptotiques, relâchent elles aussi de façon apoptose-dépendante le MFG-E8, nous avons étudié plus exhaustivement un modèle in vivo riche en apoptose épithéliale, l’obstruction urétérale unilatérale. Dans ce deuxième article présenté, nous rapportons l’implication bénéfique de MFG-E8 dans ce modèle de pathologie rénale obstructive. Nous avons constaté que la présence ou l’administration de MFG-E8 réduit le dommage tissulaire et la fibrose. La protection conférée par MFG-E8 est médiée via la modulation de l’activation de l’inflammasome. De plus, nos résultats illustrent l’importance du phénotype anti-inflammatoire du macrophage médié par le MFG-E8 dans la régulation négative de l’activation de l’inflammasome rénal et du dommage tissulaire. Cette thèse présente la première description de la relâche Caspase-3-dépendante de MFG-E8 par les cellules apoptotiques. Elle démontre également l’importance du MFG-E8 dans le microenvironnement apoptotique inflammatoire dans l’atténuation du phénotype pro-inflammatoire du macrophage. De plus, nous avons démontré son rôle protecteur dans des modèles in vivo de transplantation aortique et de réparation tissulaire, de même que dans un modèle de maladie rénale chronique où nous avons montré que cette protection conférée par MFG-E8 est médiée par la régulation négative de l’inflammasome tissulaire. Nos résultats suggèrent ainsi que le MFG-E8 pourrait être considéré comme un interrupteur inflammatoire et ainsi comme une cible potentielle dans la modulation de maladies inflammatoires.