90 resultados para UPWIND
Resumo:
Numerical results are presented and compared for three conservative upwind difference schemes for the Euler equations when applied to two standard test problems. This includes consideration of the effect of treating part of the flux balance as a source, and a comparison of different averaging of the flow variables. Two of the schemes are also shown to be equivalent in their implementation, while being different in construction and having different approximate Jacobians. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.
Resumo:
A second order accurate, characteristic-based, finite difference scheme is developed for scalar conservation laws with source terms. The scheme is an extension of well-known second order scalar schemes for homogeneous conservation laws. Such schemes have proved immensely powerful when applied to homogeneous systems of conservation laws using flux-difference splitting. Many application areas, however, involve inhomogeneous systems of conservation laws with source terms, and the scheme presented here is applied to such systems in a subsequent paper.