824 resultados para UPLIFT CAPACITY
Resumo:
The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem o limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (xi(gamma)) is determined. On account of interference, the magnitude of xi(gamma) is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.
Resumo:
The method of characteristics coupled with a log-spiral failure surface was used to develop a theory for vertical uplift capacity of shallow horizontal strip anchors in a general c-phi soil. Uplift-capacity factors F(c), F(q) and F(gamma), for the effects of cohesion, surcharge, and density, respectively, have been established as functions of embedment ratio lambda and angle of friction phi. The extent of the failure surface at the ground has also been determined. Comparisons made with existing test results support the predictive capability of the theory, and comparisons with the analysis proposed by Meyerhof and Adams show the proposed analysis provides slightly more conservative predictions of pullout capacity.
Resumo:
The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.
Resumo:
A geotecnia constitui uma disciplina relativamente recente na área da engenharia civil, e dessa disciplina faz parte um capítulo ainda menos estudado que trata de fundações submetidas a esforços de tração. O presente trabalho deriva do conjunto de provas de cargas realizado para um importante projeto de linhas de transmissão que permitiu a aferição da teoria de capacidade de carga à tração da Universidade de Grenobel, cujos estudos comparativos mostram bons resultados para fins de aplicações práticas. De posse da extensa documentação técnica produzida e documentada por esse estudo foi possível comparar os resultados obtidos pelas provas de cargas e os resultados teóricos com os resultados das modelagens 2D axisimetricas por elementos finitos. Além dessas análises, foi possível verificar a variação da resistência à tração através de análises paramétricas realizadas a partir da variação da coesão e do ângulo de atrito. Os estudos apresentados reafirmam a confiabilidade das teorias da Universidade de Grenoble, que contemplam a simplicidade desejada às aplicações de cunho prático, com resultados satisfatórios em relação àqueles obtidos nos ensaios de tração. Por outro lado, as análises paramétricas realizadas indicaram a tendência de comportamento que a resistência à tração deve apresentar para diferentes parâmetros do solo. O conhecimento dessas tendências permite ao projetista avaliar os fatores de segurança sob ponto de vista probabilístico, ou seja, permite o emprego de fatores de segurança com o conhecimento da probabilidade de ruína associada. As análises probabilísticas foram traçadas a partir do emprego de funções genéricas de várias variáveis no formato FOSM (First Order Second Moment) que fornecem soluções aproximadas para o cálculo de desvio padrão quando não existe uma amostragem representativa. Ao término das análises, obteve-se como resultado, o mapa comparativo da probabilidade de ruína para os mesmos fatores de segurança empregados com base em resistências estimadas através de diferentes métodos de cálculos (Universidade de Grenoble e modelagem computacional).
Resumo:
The uplift capacity of helical piles depends on the shear resistance of the soil above the helical plates. During helical pile installation, the soil traversed by the plates are sheared and displaced laterally, and consequently the soil structure is disturbed. Considering this fact, the aim of this paper is presenting the effect of helical piles installation in the soil mass by means of CPT tests carried out close to the soil cylinder above the pile helices. The CPT tests were performed at the CRHEA site from the Sao Carlos School of Engineering, Sao Carlos city, inland of Sao Paulo State, Brazil. In addition, an interpretation of CPT tests data for stratigrafic logging are presented and compared to Standard Penetration Tests (SPT) carried out at this site. This study showed that the CPT sleeve friction fs data were affected by the installation of helical pile in this particular tropical soil site. © 2013 Taylor & Francis Group.
Resumo:
The uplift capacity of helical anchors normally increases with the number of helical plates. The rate of capacity gain is variable, considering that the disturbance caused by the anchor installation is generally more pronounced in the soil mass above the upper plates than above the lower plates, because the upper soil layers are penetrated more times. The present investigation examines the effect of the number of helices on the performance of helical anchors in sand, based on the results of centrifuge model tests. Uplift loading tests were performed on 12 different types of piles installed in two containers of dry sand prepared with different densities. The measured fractions of the uplift capacity related to each individual helical plate of multi-helix anchors were compared with the fractions predicted by the individual bearing method. The results of this investigation indicate that in double- and triple-helix anchors, the contributions of the second and third plate to the total anchor uplift capacity decreased with the increase of sand relative density and plate diameter. In addition, these experiments demonstrated that the variation of the anchor load-displacement behavior with the number of helices also depends on these parameters.
Resumo:
Implicit in current design practice of minimum uplift capacity, is the assumption that the connection's capacity is proportional to the number of fasteners per connection joint. This assumption may overestimate the capacity of joints by a factor of two or more and maybe the cause of connection failures in extreme wind events. The current research serves to modify the current practice by proposing a realistic relationship between the number of fasteners and the capacity of the joint. The research is also aimed at further development of non-intrusive continuous load path (CLP) connection system using Glass Fiber Reinforced Polymer (GFRP) and epoxy. Suitable designs were developed for stud to top plate and gable end connections and tests were performed to evaluate the ultimate load, creep and fatigue behavior. The objective was to determine the performance of the connections under simulated sustained hurricane conditions. The performance of the new connections was satisfactory.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of anchor width (B) on vertical uplift resistance of a strip anchor plate has been examined. The anchor was embedded horizontally in a granular medium. The analysis was performed using lower bound finite element limit analysis and linear programming. An iterative procedure, proposed recently by the authors, was implemented to incorporate the variation of phi with sigma(m). It is noted that for a given embedment ratio, with a decrease in anchor width (B), (i) the uplift factor (F-gamma) increases continuously and (ii) the average ultimate uplift pressure (q(u)) decreases quite significantly. The scale effect becomes more pronounced at greater embedment ratios.
Resumo:
With an application of the upper bound finite element limit analysis, the vertical pullout capacity of a group of two horizontal strip plate anchors, with the common vertical axis and placed in a cohesive-frictional soil, has been computed. The variation of the uplift factors Fc, Fq and Fy, due to the contributions of soil cohesion, surcharge pressure and unit weight, respectively, has been evaluated for different combinations of S/B and H/B. As compared to single isolated anchor, the group of two anchors generates significantly greater magnitude of Fc for Φ ≤ 20° especially with greater values of H/B and under fully bonded anchor-soil interface condition. The factor Fc attains almost the maximum value when the upper anchor plate is placed midway between ground surface and the lower anchor plate. The factors Fq and Fy, on the other hand, for a group of two anchors are found to remain almost equal to that of a single isolated anchor as long as the levels of the lower plate in the group and the single isolated anchor are kept the same.