938 resultados para UNSTABLE DIMENSION VARIABILITY
Resumo:
Chaotic dynamical systems with two or more attractors lying on invariant subspaces may, provided certain mathematical conditions are fulfilled, exhibit intermingled basins of attraction: Each basin is riddled with holes belonging to basins of the other attractors. In order to investigate the occurrence of such phenomenon in dynamical systems of ecological interest (two-species competition with extinction) we have characterized quantitatively the intermingled basins using periodic-orbit theory and scaling laws. The latter results agree with a theoretical prediction from a stochastic model, and also with an exact result for the scaling exponent we derived for the specific class of models investigated. We discuss the consequences of the scaling laws in terms of the predictability of a final state (extinction of either species) in an ecological experiment.
Resumo:
Neste trabalho nós investigamos as relações existentes entre a Variação de Dimensão Instável(Unstable Dimension Variability - UDV) e a dimensão do espaço de fases de uma rede de mapas acoplados com acoplamento difuso. damos suporte teórico e evidências numéricas para a afirmação de que a partir de certo valor fixo da dimensão não há presença de UDV.
Resumo:
We study non-hyperbolic repellers of diffeomorphisms derived from transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf bifurcation. Using some recent abstract results about non-uniformly expanding maps with holes, by ourselves and by Dysman, we show that the Hausdorff dimension and the limit capacity (box dimension) of the repeller are strictly less than the dimension of the ambient manifold.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
El proyecto tiene como propósito caracterizar la variabilidad de la paleocirculación atmosférica en las latitudes medias de Sudamérica, su efecto sobre la fluctuación hidroclimática regional y la vulnerabilidad humana frente a los cambios ocurridos desde el Ultimo Máximo Glacial/Holoceno. El enfoque inter y multidisciplinaro aquí planteado para analizar la varibiliad hidroclimática pasada, sus causas y consecuencias, es inédito para esta región del país. El mismo contempla: a) análisis de archivos climáticos sedimentarios con una aproximación de multi-indicadores (sedimentología, geoquímica, isótopos estables y radiogénicos, mineralogía, ostrácodos y moluscos); b) determinación de la dinámica actual y pasada del polvo atmosférico (PA) combinando mediciones in situ y en registros sedimentarios y c) análisis de restos óseos humanos y malacológicos en sitios arqueológicos.Se contempla: a) Efectuar análisis de multi-indicadores de registros climáticos naturales almacenados en sistemas lacustres de la región Pampeana (S. Ambargasta, Mar Chiquita, Pocho, Melincué, Lagunas Encadenadas del Oeste de Buenos Aires) y en secuencias loessicas para inferir la variabilidad de la circulación atmosférica desde el UMG; b) Ampliar la resolución temporal de las reconstrucciones climáticas para ventanas de tiempo seleccionadas; c) Analizar la señal geoquímica del registro sedimentario de fases climáticas contrastantes; d) Identificar la variabilidad temporal de la procedencia y de los procesos actuantes mediante análisis mineralógicos y geoquímicos; e) Analizar el ambiente actual para calibrar indicadores ambientales o proxies (isótopos, flujo de sedimentos, geoquímica, moluscos y ostrácodos) con el escenario climático contemporáneo; f) Analizar en conjunto los archivos climáticos para inferir patrones de paleocirculación atmosférica regional y g) Dilucidar estrategias adaptativas y la historia biológica de poblaciones humanas en la región central de Argentina durante fases climáticas diversas.Este proyecto aborda uno de los aspectos menos conocidos de las reconstrucciones paleoambientales, que está relacionado con rol del material eólico derivado del Hemisferio Sur y el impacto que genera sobre el ciclo regional del Carbono. A pesar que el sur de Sudamérica es una de las áreas claves para entender este aspecto, no se conoce de forma acabada la incidencia de los cambios ambientales sobre el flujo de PA o el efecto de futuros cambios climáticos y/o uso de la tierra.La actividad planteada tiene implicancias directas sobre múltiples disciplinas como las ciencias atmosféricas, geoquímica, sedimentología, paleoclimatologia y bioarqueología. Nuestros resultados permitirán mejorar el entendimiento del cambio climático regional, la dinámica del polvo y su rol como forzante del sistema climático, la variabilidad hidrológica presente y pasada y la respuesta por parte de las poblaciones humanas. Profundizar el estudio de los cambios paleoclimáticos y bioarqueológicos en la región permitirá analizar la variabilidad hidroclimática y determinar su relación con las situaciones de crisis y vulnerabilidad del pobamiento humano. Asimismo, la inferencia de cambios para períodos con mínima o sin influencia humana es una herramienta clave para mejorar el conocimiento de las fluctuaciones climáticas del área extratropical Sudamericana. Estos resultados permitirán analizar no sólo los mecanismos operados en el sistema climático pasado sino también aquellos factores que explicarían el gran cambio hidroclimático registrado desde 1970 cuyos efectos han impactado claramente sobre las actividades socio-económicos en la región central Argentina.
Resumo:
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC >= 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52-0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.
Resumo:
A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD) patterns, which were interpreted and used to calculate the width at half height (WHH) and mean crystallite dimension (MCD) of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA) in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite) [Gt/(Gt+Hm)] and kaolinite/(kaolinite+gibbsite) [Kt/(Kt+Gb)] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.
Resumo:
We performed a spatiotemporal analysis of a network of 21 Scots pine (Pinus sylvestris) ring-width chronologies in northern Fennoscandia by means of chronology statistics and multivariate analyses. Chronologies are located on both sides (western and eastern) of the Scandes Mountains (67°N-70°N, 15°E-29°E). Growth relationships with temperature, precipitation, and North Atlantic Oscillation (NAO) indices were calculated for the period 1880-1991. We also assessed their temporal stability. Current July temperature and, to a lesser degree, May precipitation are the main growth limiting factors in the whole area of study. However, Principal Component Analysis (PCA) and mean interseries correlation revealed differences in radial growth between both sides of the Scandes Mountains, attributed to the Oceanic-Continental climatic gradient in the area. The gradient signal is temporally variable and has strengthened during the second half of the 20th century. Northern Fennoscandia Scots pine growth is positively related to early winter NAO indices previous to the growth season and to late spring NAO. NAO/growth relationships are unstable and have dropped in the second half of the 20th century. Moreover, they are noncontinuous through the range of NAO values: for early winter, only positive NAO indices enhance tree growth in the next growing season, while negative NAO does not. For spring, only negative NAO is correlated with radial growth.
Resumo:
The mechanical harvesting is an important stage in the production process of soybeans and, in this process; the loss of a significant number of grains is common. Despite the existence of mechanisms to monitor these losses, it is still essential to use sampling methods to quantify them. Assuming that the size of the sample area affects the reliability and variability between samples in quantifying losses, this paper aimed to analyze the variability and feasibility of using different sizes of sample area (1, 2 and 3 m²) in quantifying losses in the mechanical harvesting of soybeans. Were sampled 36 sites and the cutting losses, losses by other mechanisms of the combine and total losses were evaluated, as well as the water content in seeds, straw distribution and crop productivity. Data were subjected to statistical analysis (descriptive statistics and analysis of variance) and Statistical Control Process (SCP). The coefficients of variation were similar for the three frames available. Combine losses showed stable behavior, whereas cutting losses and total losses showed unstable behavior. The frame size did not affect the quantification and variability of losses in the mechanical harvesting of soybeans, thus a frame of 1 m² can be used for determining losses.
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Resumo:
Successful quantitative precipitation forecasts under convectively unstable conditions depend on the ability of the model to capture the location, timing and intensity of convection. Ensemble forecasts of two mesoscale convective outbreaks over the UK are examined with a view to understanding the nature and extent of their predictability. In addition to a control forecast, twelve ensemble members are run for each case with the same boundary conditions but with perturbations added to the boundary layer. The intention is to introduce perturbations of appropriate magnitude and scale so that the large-scale behaviour of the simulations is not changed. In one case, convection is in statistical equilibrium with the large-scale flow. This places a constraint on the total precipitation, but the location and intensity of individual storms varied. In contrast, the other case was characterised by a large-scale capping inversion. As a result, the location of individual storms was fixed, but their intensities and the total precipitation varied strongly. The ensemble shows case-to-case variability in the nature of predictability of convection in a mesoscale model, and provides additional useful information for quantitative precipitation forecasting.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)