993 resultados para UNCONSTRAINED OPTIMIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE Computer Society; International Association for; Computer and Information Science, ACIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 49J52, 90C30.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Focusing on the conditions that an optimization problem may comply with, the so-called convergence conditions have been proposed and sequentially a stochastic optimization algorithm named as DSZ algorithm is presented in order to deal with both unconstrained and constrained optimizations. The principle is discussed in the theoretical model of DSZ algorithm, from which we present the practical model of DSZ algorithm. Practical model efficiency is demonstrated by the comparison with the similar algorithms such as Enhanced simulated annealing (ESA), Monte Carlo simulated annealing (MCS), Sniffer Global Optimization (SGO), Directed Tabu Search (DTS), and Genetic Algorithm (GA), using a set of well-known unconstrained and constrained optimization test cases. Meanwhile, further attention goes to the strategies how to optimize the high-dimensional unconstrained problem using DSZ algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with the reliability optimization of a spatially redundant system, subject to various constraints, by using nonlinear programming. The constrained optimization problem is converted into a sequence of unconstrained optimization problems by using a penalty function. The new problem is then solved by the conjugate gradient method. The advantages of this method are highlighted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/similar to egbirgin/tango/.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we propose a new algorithm for learning polyhedral classifiers. In contrast to existing methods for learning polyhedral classifier which solve a constrained optimization problem, our method solves an unconstrained optimization problem. Our method is based on a logistic function based model for the posterior probability function. We propose an alternating optimization algorithm, namely, SPLA1 (Single Polyhedral Learning Algorithm1) which maximizes the loglikelihood of the training data to learn the parameters. We also extend our method to make it independent of any user specified parameter (e.g., number of hyperplanes required to form a polyhedral set) in SPLA2. We show the effectiveness of our approach with experiments on various synthetic and real world datasets and compare our approach with a standard decision tree method (OC1) and a constrained optimization based method for learning polyhedral sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The notion of coupling within a design, particularly within the context of Multidisciplinary Design Optimization (MDO), is much used but ill-defined. There are many different ways of measuring design coupling, but these measures vary in both their conceptions of what design coupling is and how such coupling may be calculated. Within the differential geometry framework which we have previously developed for MDO systems, we put forth our own design coupling metric for consideration. Our metric is not commensurate with similar types of coupling metrics, but we show that it both provides a helpful geo- metric interpretation of coupling (and uncoupledness in particular) and exhibits greater generality and potential for analysis than those similar metrics. Furthermore, we discuss how the metric might be profitably extended to time-varying problems and show how the metric's measure of coupling can be applied to multi-objective optimization problems (in unconstrained optimization and in MDO). © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.