828 resultados para UMMB supplementation
Resumo:
Using three different types of yaks, 30 head of 1-yr-old calves (liveweight 60.7 +/- 6.3 kg), 30 head of 2-yr-old calves (97.7 +/- 10.2 kg) and 30 head of yak cows (160.2 +/- 15.1 kg) were randomly selected from the same yak herds. Each type of yak herd was divided into control (C) and trial (T) groups using a completely randomized design, with 10 and 20 animals in the C and T groups, respectively. The animals in the C group were grazed on natural rangeland, and the animals in the T group were supplemented with urea multinutritional molasses blocks (UMMB), together with grazing on natural rangeland from January to May of 1998. The objective was to determine the effect of UMMB on productive performance of yak calves and yak cows in the cold season. Live weight loss of 1-yr-old calves, 2-yr-old calves and yak cows was reduced by 1.2, 8.3 and 7.9 kg after UMMB supplementation (P < 0.01). The 1-yr-old calves gained the most in the first month of supplementation, but the 2-yr-old calves and yak cows gained the most both in the first and last supplementation months. Daily milk yield of yak cows increased by 0.21 kg d(-1) when the lactating animals were supplemented with UMMB (P < 0.01), although there was no effect (P < 0.01) of UMMB supplementation on hair and downy hair production. Supplementation with UMMB also improved reproductive performance of yak cows, with 8.8 and 30.9% increments in pregnancy rate and newborn weight, respectively. We conclude that the benefit of UMMB supplementation the 1-yr-old calves was not economical, with only 0.3:1 output to input ratio, but supplementation of the 2-yr-old calves and yak cows may be economical, with 1.8:1 and 1.4:1 output to input ratios, respectively.
Resumo:
The present study was conducted to determine the effects of supplementary feeds, oat hay (OH), highland barley straw (HBS) and multi-nutrient blocks supplementation (UMMB) on reducing liveweight losses of both yak cows and calves grazed on low quality pastures during cold season. The trials of OH and HBS supplementation were conducted by using completely random design on 104 yak cows between 6 and 12 years of age as the following treatments: pure grazing (41 animals, body weight 230 67 kg) as control (CK); grazing+1.5 kg DM of OH per head daily (30 animals, body weight 216 28 kg); gazing. 1.5 kg DM of HBS per head daily (33 animals, body weight 221 34 kg). The trial of UMMB was conducted on three types of yaks, 1-year calves (8-12 months old, body weight 61.1 6.9 kg), 2-year calves (18-24 months old, 98.0 11.3 kg) and yak cows (164.5 27.1 (S.D.) kg) with 20 animals in control group (CK) and 20 animals in supplement group for each type by using completely random design as the following treatments: pure grazing for CK group; grazing+ 150, 250 and 500 g UMMB per day averagely for 1-year calf, 2-year calf and cow at night. The results indicate that the animals supplemented with oat hay received body weight gain (32 20.7 g day(-1)), while those supplemented with highland barley straw still suffered from body weight loss (-56.7 39.3 a day(-1)); UMMB supplementation can decrease the body weight loss by 109.7%, 86.6% and 63.4% for the 1-year calves, 2-year calves and yak cows, respectively, as compared with pure grazing. Around US$1.60 output can be achieved on the basis of US$1 input for UMMB supplementation in the farming systems of the 1-year calves, 2-year calves and yak cows, while US$1 input can produce US$1.55 and 1.14 output for OH and FIBS supplementations, respectively, in yak cows' farming system. It can be preliminary concluded that UMMB supplementation was the most economic way to alleviate body weight loss of grazing yaks over cold season, and the higher productive returns were obtained from OH supplementation for grazing yak cows during winter/spring months. © 2004 Elsevier B.V All rights reserved.
Resumo:
Objective: To determine the effect of zinc supplementation on taste perception in a group of hemodialysis patients. Design and Setting: Double-blind randomized placebo-controlled study in a teaching hospital dialysis unit. Patients: Fifteen stable hemodialysis patients randomized to placebo (6 male, 2 female; median age, 67; range, 30 to 72 years) or treatment (5 male, 2 female; median age, 60; range, 31 to 76 years). Intervention: Treatment group received zinc sulfate 220 mg per day for 6 weeks, and the placebo group received an apparently identical dummy pill. Main Outcome Measures: Taste scores by visual analogue scales, normalized protein catabolic rate and plasma, whole blood and red cell zinc levels. Results: At baseline, sweet and salt tastes were identified correctly by both groups. Sour was often confused with salt. Sour solutions of different concentrations were not distinguishable. Taste scores were not different after 6 weeks for either group. There was no significant increment in zinc levels or normalized protein catabolic rate for either group. Conclusion: We found a disturbance of taste perception in hemodialysis patients, particularly for the sour modality, which was not corrected by this regimen of zinc supplementation. These results cast doubts on the conclusions of earlier studies that indicated an improvement in taste after zinc supplementation.
Resumo:
Introduction: Management of osteoarthritis (OA) includes the use of non-pharmacological and pharmacological therapies. Although walking is commonly recommended for reducing pain and increasing physical function in people with OA, glucosamine sulphate has also been used to alleviate pain and slow the progression of OA. This study evaluated the effects of a progressive walking program and glucosamine sulphate intake on OA symptoms and physical activity participation in people with mild to moderate hip or knee OA. Methods: Thirty-six low active participants (aged 42 to 73 years) were provided with 1500 mg glucosamine sulphate per day for 6 weeks, after which they began a 12-week progressive walking program, while continuing to take glucosamine. They were randomized to walk 3 or 5 days per week and given a pedometer to monitor step counts. For both groups, step level of walking was gradually increased to 3000 steps/day during the first 6 weeks of walking, and to 6000 steps/day for the next 6 weeks. Primary outcomes included physical activity levels, physical function (self-paced step test), and the WOMAC Osteoarthritis Index for pain, stiffness and physical function. Assessments were conducted at baseline and at 6-, 12-, 18-, and 24-week follow-ups. The Mann Whitney Test was used to examine differences in outcome measures between groups at each assessment, and the Wilcoxon Signed Ranks Test was used to examine differences in outcome measures between assessments. Results: During the first 6 weeks of the study (glucosamine supplementation only), physical activity levels, physical function, and total WOMAC scores improved (P<0.05). Between the start of the walking program (Week 6) and the final follow-up (Week 24), further improvements were seen in these outcomes (P<0.05) although most improvements were seen between Weeks 6 and 12. No significant differences were found between walking groups. Conclusions: In people with hip or knee OA, walking a minimum of 3000 steps (~30 minutes), at least 3 days/week, in combination with glucosamine sulphate, may reduce OA symptoms. A more robust study with a larger sample is needed to support these preliminary findings. Trial Registration: Australian Clinical Trials Registry ACTRN012607000159459.
Resumo:
Summary This systematic review demonstrates that vitamin D supplementation does not have a significant effect on muscle strength in vitamin D replete adults. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Introduction The purpose of this study is to systematically review the evidence on the effect of vitamin D supplementation on muscle strength in adults. Methods A comprehensive systematic database search was performed. Inclusion criteria included randomised controlled trials (RCTs) involving adult human participants. All forms and doses of vitamin D supplementation with or without calcium supplementation were included compared with placebo or standard care. Outcome measures included evaluation of strength. Outcomes were compared by calculating standardised mean difference (SMD) and 95% confidence intervals. Results Of 52 identified studies, 17 RCTs involving 5,072 participants met the inclusion criteria. Meta-analysis showed no significant effect of vitamin D supplementation on grip strength (SMD −0.02, 95%CI −0.15,0.11) or proximal lower limb strength (SMD 0.1, 95%CI −0.01,0.22) in adults with 25(OH)D levels >25 nmol/L. Pooled data from two studies in vitamin D deficient participants (25(OH)D <25 nmol/L) demonstrated a large effect of vitamin D supplementation on hip muscle strength (SMD 3.52, 95%CI 2.18, 4.85). Conclusion Based on studies included in this systematic review, vitamin D supplementation does not have a significant effect on muscle strength in adults with baseline 25(OH)D >25 nmol/L. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Keywords Muscle – Muscle fibre – Strength – Vitamin D
Resumo:
Background Anemia due to iron deficiency is recognized as one of the major nutritional deficiencies in women and children in developing countries. Daily iron supplementation for pregnant women is recommended in many countries although there are few reports of these programs working efficiently or effectively. Weekly iron-folic acid supplementation (WIFS) and regular deworming treatment is recommended for non-pregnant women living in areas with high rates of anemia. Following a baseline survey to assess the prevalence of anemia, iron deficiency and soil transmitted helminth infections, we implemented a program to make WIFS and regular deworming treatment freely and universally available for all women of reproductive age in two districts of a province in northern Vietnam over a 12 month period. The impact of the program at the population level was assessed in terms of: i) change in mean hemoglobin and iron status indicators, and ii) change in the prevalence of anemia, iron deficiency and hookworm infections. Method Distribution of WIFS and deworming were integrated with routine health services and made available to 52,000 women. Demographic data and blood and stool samples were collected in baseline, and three and 12-month post-implementation surveys using a population-based, stratified multi-stage cluster sampling design. Results The mean Hb increased by 9.6 g/L (95% CI, 5.7, 13.5, p < 0.001) during the study period. Anemia (Hb<120 g/L) was present in 131/349 (37.5%, 95% CI 31.3, 44.8) subjects at baseline, and in 70/363 (19.3%, 95% CI 14.0, 24.6) after twelve months. Iron deficiency reduced from 75/329 (22.8%, 95% CI 16.9, 28.6) to 33/353 (9.3%, 95% CI 5.7, 13.0) by the 12-mnth survey, and hookworm infection from 279/366 (76.2%,, 95% CI 68.6, 83.8) to 66/287 (23.0%, 95% CI 17.5, 28.5) over the same period. Conclusion A free, universal WIFS program with regular deworming was associated with reduced prevalence and severity of anemia, iron deficiency and ho
Resumo:
A 16 y.o. fully ambulant boy born to consanguineous Indian parents, presented for assessment of a fragility femoral neck fracture sustained against a background of autism and moderately severe intellectual disability. He had a past history of infantile eczema, and epilepsy treated with anticonvulsants from 2 to 10 years of age, with no further seizures following cessation of anticonvulsants. He had a thin body habitus (see Table 1) with long fingers and a high arched palate. He had no speech and negligible social interaction, but physical examination was otherwise unremarkable. Positive investigations revealed an undetectable serum creatinine and a urinary metabolic screen which showed an elevated GUA:Phe of 160 (< 36) and a decreased creatinine of 0.3 mmol/l (1.2–29.5) consistent with the diagnosis of guanidinoacetate methyltransferase(GAMT) deficiency. He was commenced on oral creatine 5 g three times daily. Despite improvement in physical activity, height and bone density, there was no discernable improvement in his intellectual functioning. Proton and phosphorous brain and leg magnetic resonance spectroscopy(MRS) was performed at baseline and showed an increased inorganic phosphorus peak and decreased phosphocreatine synthesis in brain and decreased creatine concentration in muscle. Following creatine treatment total brain creatine(1H-MRS) and phosphocreatine/ATP ratio (31P-MRS) content increased to 30% and 60% of control values, respectively. Brain GUA returned to normal levels.
Resumo:
We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.
Resumo:
Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Resumo:
Ultraendurance exercise training places large energy demands on athletes and causes a high turnover of vitamins through sweat losses, metabolism, and the musculoskeletal repair process. Ultraendurance athletes may not consume sufficient quantities or quality of food in their diet to meet these needs. Consequently, they may use oral vitamin and mineral supplements to maintain their health and performance. We assessed the vitamin and mineral intake of ultraendurance athletes in their regular diet, in addition to oral vitamin and mineral supplements. Thirty-seven ultraendurance triathletes (24 men and 13 women) completed a 7-day nutrition diary including a questionnaire to determine nutrition adequacy and supplement intake. Compared with dietary reference intakes for the general population, both male and female triathletes met or exceeded all except for vitamin D. In addition, female athletes consumed slightly less than the recommended daily intake for folate and potassium; however, the difference was trivial. Over 60% of the athletes reported using vitamin supplements, of which vitamin C (97.5%), vitamin E (78.3%), and multivitamins (52.2%) were the most commonly used supplements. Almost half (47.8%) the athletes who used supplements did so to prevent or reduce cold symptoms. Only 1 athlete used supplements on formal medical advice. Vitamin C and E supplementation was common in ultraendurance triathletes, despite no evidence of dietary deficiency in these 2 vitamins.
Resumo:
Purpose: To investigate the effects of an acute multinutrient supplement on game-based running performance, peak power output, anaerobic by-products, hormonal profiles, markers of muscle damage, and perceived muscular soreness before, immediately after, and 24 h following competitive rugby union games. Methods: Twelve male rugby union players ingested either a comprehensive multinutrient supplement (SUPP), [RE-ACTIVATE:01], or a placebo (PL) for 5 d. Participants then performed a competitive rugby union game (with global positioning system tracking), with associated blood draws and vertical jump assessments pre, immediately post and 24 h following competition. Results: SUPP ingestion resulted in moderate to large effects for augmented 1st half very high intensity running (VHIR) mean speed (5.9 ± 0.4 vs 4.8 ± 2.3 m·min–1; d= 0.93). Further, moderate increases in 2nd half VHIR distance (137 ± 119 vs 83 ± 89 m; d= 0.73) and VHIR mean speed (5.9 ± 0.6 v 5.3 ± 1.7 m·min–1; d= 0.56) in SUPP condition were also apparent. Postgame aspartate aminotransferase (AST; 44.1 ± 11.8 vs 37.0 ± 3.2 UL; d= 1.16) and creatine kinase (CK; 882 ± 472 vs. 645 ± 123 UL; d= 0.97) measures demonstrated increased values in the SUPP condition, while AST and CK values correlated with 2nd half VHIR distance (r= –0.71 and r= –0.76 respectively). Elevated C-reactive protein (CRP) was observed postgame in both conditions; however, it was significantly blunted with SUPP (P= .05). Conclusions: These findings suggest SUPP may assist in the maintenance of VHIR during rugby union games, possibly via the buffering qualities of SUPP ingredients. However, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anticatabolic properties of the supplement.
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.