5 resultados para UMLS
Resumo:
A web service is a collection of industry standards to enable reusability of services and interoperability of heterogeneous applications. The UMLS Knowledge Source (UMLSKS) Server provides remote access to the UMLSKS and related resources. We propose a Web Services Architecture that encapsulates UMLSKS-API and makes it available in distributed and heterogeneous environments. This is the first step towards intelligent and automatic UMLS services discovery and invocation by computer systems in distributed environments such as web.
Resumo:
The Australian e-Health Research Centre (AEHRC) recently participated in the ShARe/CLEF eHealth Evaluation Lab Task 1. The goal of this task is to individuate mentions of disorders in free-text electronic health records and map disorders to SNOMED CT concepts in the UMLS metathesaurus. This paper details our participation to this ShARe/CLEF task. Our approaches are based on using the clinical natural language processing tool Metamap and Conditional Random Fields (CRF) to individuate mentions of disorders and then to map those to SNOMED CT concepts. Empirical results obtained on the 2013 ShARe/CLEF task highlight that our instance of Metamap (after ltering irrelevant semantic types), although achieving a high level of precision, is only able to identify a small amount of disorders (about 21% to 28%) from free-text health records. On the other hand, the addition of the CRF models allows for a much higher recall (57% to 79%) of disorders from free-text, without sensible detriment in precision. When evaluating the accuracy of the mapping of disorders to SNOMED CT concepts in the UMLS, we observe that the mapping obtained by our ltered instance of Metamap delivers state-of-the-art e ectiveness if only spans individuated by our system are considered (`relaxed' accuracy).
Resumo:
Le domaine biomédical est probablement le domaine où il y a les ressources les plus riches. Dans ces ressources, on regroupe les différentes expressions exprimant un concept, et définit des relations entre les concepts. Ces ressources sont construites pour faciliter l’accès aux informations dans le domaine. On pense généralement que ces ressources sont utiles pour la recherche d’information biomédicale. Or, les résultats obtenus jusqu’à présent sont mitigés : dans certaines études, l’utilisation des concepts a pu augmenter la performance de recherche, mais dans d’autres études, on a plutôt observé des baisses de performance. Cependant, ces résultats restent difficilement comparables étant donné qu’ils ont été obtenus sur des collections différentes. Il reste encore une question ouverte si et comment ces ressources peuvent aider à améliorer la recherche d’information biomédicale. Dans ce mémoire, nous comparons les différentes approches basées sur des concepts dans un même cadre, notamment l’approche utilisant les identificateurs de concept comme unité de représentation, et l’approche utilisant des expressions synonymes pour étendre la requête initiale. En comparaison avec l’approche traditionnelle de "sac de mots", nos résultats d’expérimentation montrent que la première approche dégrade toujours la performance, mais la seconde approche peut améliorer la performance. En particulier, en appariant les expressions de concepts comme des syntagmes stricts ou flexibles, certaines méthodes peuvent apporter des améliorations significatives non seulement par rapport à la méthode de "sac de mots" de base, mais aussi par rapport à la méthode de Champ Aléatoire Markov (Markov Random Field) qui est une méthode de l’état de l’art dans le domaine. Ces résultats montrent que quand les concepts sont utilisés de façon appropriée, ils peuvent grandement contribuer à améliorer la performance de recherche d’information biomédicale. Nous avons participé au laboratoire d’évaluation ShARe/CLEF 2014 eHealth. Notre résultat était le meilleur parmi tous les systèmes participants.
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.
Resumo:
El presente Trabajo Fin de Grado (TFG) surge de la necesidad de disponer de tecnologías que faciliten el Procesamiento de Lenguaje Natural (NLP) en español dentro del sector de la medicina. Centrado concretamente en la extracción de conocimiento de las historias clínicas electrónicas (HCE), que recogen toda la información relacionada con la salud del paciente y en particular, de los documentos recogidos en dichas historias, pretende la obtención de todos los términos relacionados con la medicina. El Procesamiento de Lenguaje Natural permite la obtención de datos estructurados a partir de información no estructurada. Estas técnicas permiten un análisis de texto que genera etiquetas aportando significado semántico a las palabras para la manipulación de información. A partir de la investigación realizada del estado del arte en NLP y de las tecnologías existentes para otras lenguas, se propone como solución un módulo de anotación de términos médicos extraídos de documentos clínicos. Como términos médicos se han considerado síntomas, enfermedades, partes del cuerpo o tratamientos obtenidos de UMLS, una ontología categorizada que agrega distintas fuentes de datos médicos. Se ha realizado el diseño y la implementación del módulo así como el análisis de los resultados obtenidos realizando una evaluación con treinta y dos documentos que contenían 1372 menciones de terminología médica y que han dado un resultado medio de Precisión: 70,4%, Recall: 36,2%, Accuracy: 31,4% y F-Measure: 47,2%.---ABSTRACT---This Final Thesis arises from the need for technologies that facilitate the Natural Language Processing (NLP) in Spanish in the medical sector. Specifically it is focused on extracting knowledge from Electronic Health Records (EHR), which contain all the information related to the patient's health and, in particular, it expects to obtain all the terms related to medicine from the documents contained in these records. Natural Language Processing allows us to obtain structured information from unstructured data. These techniques enable analysis of text generating labels providing semantic meaning to words for handling information. From the investigation of the state of the art in NLP and existing technologies in other languages, an annotation module of medical terms extracted from clinical documents is proposed as a solution. Symptoms, diseases, body parts or treatments are considered part of the medical terms contained in UMLS ontology which is categorized joining different sources of medical data. This project has completed the design and implementation of a module and the analysis of the results have been obtained. Thirty two documents which contain 1372 mentions of medical terminology have been evaluated and the average results obtained are: Precision: 70.4% Recall: 36.2% Accuracy: 31.4% and F-Measure: 47.2%.