984 resultados para UCN, neutron, electric charge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die elektrische Ladung des Neutrons ist eng mit der Frage nach der Existenz der Ladungsquantisierung verknüpft: Sollte das Neutron eine Ladung tragen, kann die Ladung nicht in Einheiten der Elementarladung e quantisiert sein.rnrnIm Rahmen der Elektrodynamik und des minimalen Standardmodells ist die Quantisierung der Ladung nicht enthalten. Eine mögliche Neutronenladung würde ihnen also nicht widersprechen. Allerdings geht sie aus den Weiterentwicklungen dieser Modelle hervor. Die sogenannten Grand Unified Theories sagen die Möglichkeit des Protonenzerfalls vorher. Dieser ist nur möglich, wenn die Ladung quantisiert ist.rnrnDurch die Messung einer elektrischen Ladung des Neutrons können die verschiedenen Theorien überprüft werden.rnrnIm Rahmen dieser Arbeit wurde eine Apparatur entwickelt, mit der die elektrische Ladung des Neutrons gemessen werden kann. Als Grundlage diente das Prinzip einer Messung von 1988. Mit einem flüssigen Neutronenspiegel aus Fomblin ist es zum ersten mal überhaupt gelungen, einen flüssigen Spiegel für Neutronen einzusetzen. Durch diese und andere Verbesserungen konnte die Sensitivität der Apparatur um einen Faktor 5 im Vergleich zum Experimentrnvon 1988 verbessert werden. Eine mögliche Ladung des Neutrons kann mit δq_n = 2,15·10^(−20)·e/√day gemessen werden. rnrnDie Messung der elektrischen Ladung soll im Winter 2014 durchgeführt werden. Bis dahin soll die Präzision aufrnδq_n = 1,4·10^(−21)·e/√day erhöht werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A permanent electric dipole moment of the neutron violates time reversal as well as parity symmetry. Thus it also violates the combination of charge conjugation and parity symmetry if the combination of all three symmetries is a symmetry of nature. The violation of these symmetries could help to explain the observed baryon content of the Universe. The prediction of the Standard Model of particle physics for the neutron electric dipole moment is only about 10e−32 ecm. At the same time the combined violation of charge conjugation and parity symmetry in the Standard Model is insufficient to explain the observed baryon asymmetry of the Universe. Several extensions to the Standard Model can explain the observed baryon asymmetry and also predict values for the neutron electric dipole moment just below the current best experimental limit of d n < 2.9e−26 ecm, (90% C.L.) that has been obtained by the Sussex-RAL-ILL collaboration in 2006. The very same experiment that set the current best limit on the electric dipole moment has been upgraded and moved to the Paul Scherrer Institute. Now an international collaboration is aiming at increasing the sensitivity for an electric dipole moment by more than an order of magnitude. This thesis took place in the frame of this experiment and went along with the commissioning of the experiment until first data taking. After a short layout of the theoretical background in chapter 1, the experiment with all subsystems and their performance are described in detail in chapter 2. To reach the goal sensitivity the control of systematic errors is as important as an increase in statistical sensitivity. Known systematic efects are described and evaluated in chapter 3. During about ten days in 2012, a first set of data was measured with the experiment at the Paul Scherrer Institute. An analysis of this data is presented in chapter 4, together with general tools developed for future analysis eforts. The result for the upper limit of an electric dipole moment of the neutron is |dn| ≤ 6.4e−25 ecm (95%C.L.). Chapter 5 presents investigations for a next generation experiment, to build electrodes made partly from insulating material. Among other advantages, such electrodes would reduce magnetic noise, generated by the thermal movement of charge carriers. The last Chapter summarizes this work and gives an outlook.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a measurement of the electric charge of the top quark using $\ppbar$ collisions corresponding to an integrated luminosity of 2.7~fb$^{-1}$ at the CDF II detector. We reconstruct $\ttbar$ events in the lepton+jets final state and use kinematic information to determine which $b$-jet is associated with the leptonically- or hadronically-decaying $t$-quark. Soft lepton taggers are used to determine the $b$-jet flavor. Along with the charge of the $W$ boson decay lepton, this information permits the reconstruction of the top quark's electric charge. Out of 45 reconstructed events with $2.4\pm0.8$ expected background events, 29 are reconstructed as $\ttbar$ with the standard model $+$2/3 charge, whereas 16 are reconstructed as $\ttbar$ with an exotic $-4/3$ charge. This is consistent with the standard model and excludes the exotic scenario at 95\% confidence level. This is the strongest exclusion of the exotic charge scenario and the first to use soft leptons for this purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the black hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of the standard model the quantization of the electric charge occurs only family by family. When we consider the three families together with massless neutrinos the electric charge is not quantized any more. Here we show that a chiral bilepton gauge model based on the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)N explains the quantization of the electric charge when we take into account the three families of fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutrinos are massless or Dirac or Majorana massive fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate whether the equality found for the response of static scalar sources interacting (i) with Hawking radiation in Schwarzschild spacetime and (ii) with the Fulling-Davies-Unruh thermal bath in the Rindler wedge is maintained in the case of electric charges. We find a finite result in the Schwarzschild case, which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the Rindler case, i.e., in the case of uniformly accelerated charges in Minkowski spacetime. Thus the equality found for scalar sources does not hold for electric charges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the structure of electromagnetic interactions and electric charge quantization in gauge theories of electroweak interactions based on semisimple groups. We show that in the standard model of electroweak interactions the structure of electromagnetic interactions is strongly correlated to the quantization pattern of electric charges. We examine these two questions also in all possible chiral bilepton gauge models of electroweak interactions. In all, we can explain the vectorlike nature of electromagnetic interactions and electric charge quantization together demanding nonvanishing fermion masses and anomaly cancellations. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the black hole.