991 resultados para U–Pb zircon dating
Resumo:
Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U–Pb zircon ages at 399±7 Ma, dating the Variscan emplacement of UAT. In contrast,U–Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500–480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500–480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the VariscanWilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flowregime, possibly related to the Palaeotethys back-arc basin development (ca. 450–420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/ recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400–390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.
Resumo:
New ages (U-Pb isotopic data) on zircon and monazite in the pre-Alpine basement of the Penninic realm (Valais, Switzerland) are presented. They are related to a Variscan metamorphic high-grade event (ca. 330 Ma) and to post-Variscan magmatic activities (ca. 270 Ma).
Resumo:
Among the large number of granitic intrusions within the Dora-Maira massif, several main types can be distinguished. In this study we report field, petrographic and geochemical investigations as well as zircon typology and conventional U-Pb zircon dating of plutons representing these types. The main results are as follows: the Punta Muret augengneiss is a polymetamorphosed peraluminous granite of anatectic origin. It is 457 +/- 2 Ma old and represents one of the numerous Caledonian orthogneisses of the Alpine basement. All other dated granites are of Late Variscan age. The Cavour leucogranite is an evolved granite of probably calc-alkaline affiliation, dated at 304 +/- 2 Ma. The dioritic and granodioritic facies of the Malanaggio diorite (auct.) are typical calc-alkaline rocks, whose respective age of 290 +/- 2 and 288 +/- 2 Ma overlap within errors. The Sangone and Freidour granite types have very similar alkali-calcic characteristics; their ages are poorly constrained between 267-279 and 268-283 Ma, respectively. The new data for the Dora-Maira granites are in keeping with models of the overall evolution of the Late- to Post-Variscan magmatism in the Alpine area in terms of age distribution and progressive geochemical evolution towards alkaline melts. In a first approximation, granitic rocks across the Variscan belt seem to be increasingly younger towards the internal (southern) parts of the orogen. A Carboniferous, distensive Basin and Range situation is thought to be responsible for the magmatic activity. This tectonic context is comparable to the back-are opening of an active continental margin. The observed southward migration of the magmatism could be linked to the roll-back of the subducting Paleotethyan oceanic plate along the Variscan cordillera.
Resumo:
We report new high-precision U/Pb ages and geochemical data from the Chalten Plutonic Complex to better understand the link between magmatism and tectonics in Southern Patagonia. This small intrusion located in the back-arc region east of the Patagonian Batholith provides important insights on the role of arc migration and subduction erosion. The Chalten Plutonic Complex consists of a suite of calc-alkaline gabbroic to granitic rocks, which were emplaced over 530 kyr between 16.90 +/- 0.05 Ma and 16.37 +/- 0.02 Ma. A synthesis of age and geochemical data from other intrusions in Patagonia reveals (a) striking similarities between the Chalten Plutonic Complex and the Neogene intrusions of the batholith and differences to other back-arc intrusions such as Torres del Paine (b) a distinct E-W trend of calc-alkaline magmatic activity between 20 and 17 Ma. We propose that this trend reflects the eastward migration of the magmatic arc, and the consistent age pattern between the subduction segments north and south of the Chile triple junction suggests a causal relation with a period of fast subduction of the Farallon-Nazca plate during the Early Miocene. Previously proposed flat slab models are not consistent with the present location and morphology of the Southern Patagonian Batholith. We advocate, alternatively, that migration of the magmatic arc is caused by subduction erosion due to the increasing subduction velocities during the Early Miocene.
Resumo:
The Precambrian Rio Paraíba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcanosedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calcalkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones.
Resumo:
One of the key for the understanding of an orogenic belt is the characterization of the terranes involved and the identification of the suture(s) separating crustal blocks: these are essential information for large-scale paleo-reconstructions. In addition, the structural relationships between the terranes involved in the collisional processes and the eventual UHP relicts may provide first order inputs to exhumation models of subducted rocks. The structure of the Rhodope Massif (northern Greece and southern Bulgaria) results from the stacking of high-grade nappes during a continental collision, which age is comprised between Latest-Jurassic and Early-Cenozoic. UHP and HP relicts, associated with oceanic and ultramafic material, suggest the presence of a dismembered suture zone within the massif. The location of this suture remains unclear; furthermore, up to now, the UHP and eclogitic localities represent isolated spots and no synthesis on their structural position within the massif has been proposed. The first aim of this work is to define the relationships between HP-UHP relicts, crustal blocks, shear zones and amphibolitic material. To achieve this objective, we characterized the accreted blocks in terms of protoliths ages of the orthogneisses mainly along two cross sections on the Greek part of the belt. Geochemical affinities of meta-igneous rocks served as a complementary tool for terrane characterization and geodynamic interpretation. Single-zircon Pb-Pb evaporation and zircon U-Pb SHRIMP dating of orthogneiss protoliths define two groups of intrusion-ages: Permo-Carboniferous and Late Jurassic-Early Cretaceous. Structurally, these two groups correspond to distinct units: the Late Jurassic gneissic complex overthrusts the one bearing the Permo-Carboniferous orthogneisses. Mylonites, eclogites, amphibolites of oceanic affinities, and UHP micaschists, mark a “melange” zone, intensively sheared towards the SW, which separates the two units. Thus, we interpret them as two distinct terranes, the Rhodope and Thracia terranes, separated by the Nestos suture. The correlation of our findings in northern Greece to the Bulgarian part of the Massif suggests a northern rooting of the Nestos Suture. This configuration results of the closure of a marginal oceanic basin of the Tethys system by a north-directed subduction. This interpretation is supported by the geochemical affinities of the orthogneisses: the Late-Jurassic igneous rocks formed by subduction-related magmatism, pprobably the same north-directed subduction that gave rise to the UHP metamorphism of the metasediments of the “melange” zone. It is noteworthy that the UHP-HP relicts seem to be restricted to the contact between the two terranes suggesting that the UHP relicts are exhumed only within the suture zone. Furthermore, the singularity of the suture suggests that the Late-Jurassic subduction explains the occurrence of UHP and eclogite relicts in the Central Rhodope despite the large age range previously attributed the UHP and/or HP stage.
Resumo:
U–Pb geochronological study of zircons from nodular granites and Qtz-diorites comprising part of Variscan high- grade metamorphic complexes in Gredos massif (Spanish Central System batholith) points out the significant presence of Cambro-Ordovician protoliths among the Variscan migmatitic rocks that host the Late Carboniferous intrusive granitoids. Indeed, the studied zone was affected by two contrasted tectono-magmatic episodes, Car- boniferous (Variscan) and Cambro-Ordovician. Three main characteristics denote a close relation between the Cambro-Ordovician protholiths of the Prado de las Pozas high-grade metamorphic complex, strongly reworked during the Variscan Orogeny, and other Cambro-Ordovician igneous domains in the Central Iberian Zone of the Iberian Massif: (1) geochemical features show the ferrosilicic signature of nodular granites. They plot very close to the average analysis of themetavolcanic rocks of the Ollo de Sapo formation (Iberia). Qtz-diorites present typical calc-alkaline signatures and are geochemically similar to intermediate cordilleran granitoids. (2) Both Qtz-diorite and nodular granite samples yield a significant population of Cambro-Ordovician ages, ranging between 483 and 473 Ma and between 487 and 457 Ma, respectively. Besides, (3) the abundance of zircon inher- itance observed on nodular granites matches the significant component of inheritance reported on Cambro- Ordovician metagranites and metavolcanic rocks of central and NW Iberia. The spatial and temporal coincidence of both peraluminous and intermediate granitoids, and specifically in nodular granites and Qtz-diorite enclaves of the Prado de las Pozas high-grade complex, is conducive to a common petrogenetic context for the formation of both magmatic types. Tectonic and geochemical characteristics describe the activity of a Cambro-Ordovician arc-back-arc tectonic set- ting associated with the subduction of the Iapetus–Tornquist Ocean and the birth of the Rheic Ocean. The exten- sional setting is favorable for the generation, emplacement, and fast rise of subduction-related cold diapirs, supported by the presence of typical calc-alkaline cordilleran granitoids contemporary with ferrosilicic volcanism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Resumo:
Detrital studies that utilize zircon U–Pb geochronology and fission-track (FT) thermochronometry are subject to a range of potential sources of bias that should be properly evaluated and minimized. Some of them are common to any single-grain mineral analysis (e.g., variable bedrock mineral fertility, hydraulic sorting during transport, selective grain loss during sample processing), whereas others are intrinsic to zircon, and are related to radiation damage and age discordance. In this article, we quantify the impact of intrinsic bias on detrital studies thanks to the analysis of modern detritus shed from the European Alps, and illustrate the general implications on geological interpretations. We show that detrital zircon U–Pb age distributions based on statistically robust datasets are highly reproducible and representative of the parent bedrock ages in the catchment. Arbitrary or selective removal of discordant grain ages can be minimized by using the Kolmogorov–Smirnov test to identify an appropriate cutoff level. Loss of metamict (α-damaged) zircon has a minor impact on data representativeness, and is mainly controlled by regional metamorphism rather than by mechanical abrasion during river transport. Zircon FT grain-age distributions were found to have poor reproducibility, although age spectra are consistent with bedrock data. However, unlike the U–Pb datasets, U-rich zircon grains (> 1000 ppm) are systematically missed, and undatable grains may exceed 50%. We identify two major sources of distribution bias specific to zircon FT datasets: (i) sediment sources dominated by U-rich zircon grains are markedly underrepresented in the detrital record, because such grains often have uncountable high densities of fission tracks (“U concentration bias”); (ii) sediment sources that shed zircon grains with high levels of α-damage are underrepresented, because these grains are lost during chemical etching for FT revelation (“etching bias”). In the case of multimethod dating on the same grains (e.g., FT and U–Pb double dating), bias affecting detrital zircon FT dating propagates to the entire dataset. These effects may not impact on exhumation-rate studies that utilize the youngest grain ages (i.e., lag-time approach). However, they represent a limiting factor for conventional provenance studies, and generally preclude application of zircon FT dating to sediment budget calculations.
Resumo:
U-Pb dating of zircons by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is a widely used analytical technique in Earth Sciences. For U-Pb ages below 1 billion years (1 Ga), Pb-206/U-238 dates are usually used, showing the least bias by external parameters such as the presence of initial lead and its isotopic composition in the analysed mineral. Precision and accuracy of the Pb/U ratio are thus of highest importance in LA-ICPMS geochronology. We consider the evaluation of the statistical distribution of the sweep intensities based on goodness-of-fit tests in order to find a model probability distribution fitting the data to apply an appropriate formulation for the standard deviation. We then discuss three main methods to calculate the Pb/U intensity ratio and its uncertainty in the LA-ICPMS: (1) ratio-of-the-mean intensities method, (2) mean-of-the-intensity-ratios method and (3) intercept method. These methods apply different functions to the same raw intensity vs. time data to calculate the mean Pb/U intensity ratio. Thus, the calculated intensity ratio and its uncertainty depend on the method applied. We demonstrate that the accuracy and, conditionally, the precision of the ratio-of-the-mean intensities method are invariant to the intensity fluctuations and averaging related to the dwell time selection and off-line data transformation (averaging of several sweeps); we present a statistical approach how to calculate the uncertainty of this method for transient signals. We also show that the accuracy of methods (2) and (3) is influenced by the intensity fluctuations and averaging, and the extent of this influence can amount to tens of percentage points; we show that the uncertainty of these methods also depends on how the signal is averaged. Each of the above methods imposes requirements to the instrumentation. The ratio-of-the-mean intensities method is sufficiently accurate provided the laser induced fractionation between the beginning and the end of the signal is kept low and linear. We show, based on a comprehensive series of analyses with different ablation pit sizes, energy densities and repetition rates for a 193 nm ns-ablation system that such a fractionation behaviour requires using a low ablation speed (low energy density and low repetition rate). Overall, we conclude that the ratio-of-the-mean intensities method combined with low sampling rates is the most mathematically accurate among the existing data treatment methods for U-Pb zircon dating by sensitive sector field ICPMS.
Resumo:
A radiometric zircon age of 285.4 +/- 8.6 Ma (IDTIMS U-Pb) is reported from a tonstein layer interbedded with coal seams in the Faxinal coalfield, Rio Grande do Sul, Brazil. Calibration of palynostratigraphic data with the absolute age shows that the coal depositional interval in the southern Parana Basin is constrained to the Sakmarian. Consequently, the basal Gondwana sequence in the southern part of the basin should lie at the Carboniferous-Permian boundary, not within the Sakmarian as previously considered. The new results are significant for correlations between the Parana Basin and the Argentinian Paganzo Basin (302 +/- 6 Ma and 288 +/- 7 Ma) and with the Karoo Basin, specifically with the top of the Dwyka Tillite (302 +/- 3 Ma and 299.2 +/- 3.2 Ma) and the lowermost Ecca Group (288 +/- 3 Ma and 289.6 +/- 3.8 Ma). The evidence signifies widespread latest Carboniferous volcanic activity in western Gondwana. (C) 2007 Elsevier Ltd. All rights reserved.