28 resultados para Tyrosol
Resumo:
Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.
Resumo:
The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections.
Resumo:
Papulaspora immersa H. H. HOTS ON was isolated from roots and leaves of Smallanthus sonchifolius (POEPP. and ENDL.) H. ROB. (Asteraceae), traditionally known as Yacon. The fungus was cultured in rice, and, from the AcOEt fraction, 14 compounds were isolated. Among them, (22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (4), 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol (10), and the chromone papulasporin (13) were new secondary metabolites. The spectral data of the known natural products were compared with the literature data, and their structures were established as the (24R)stigmast 4 en 3 one (1), 24-methylenecycloartan-3 beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (-)-(3R,4R)-4-hydroxymellein (5), (-)-(3R)-5-hydroxymellein (6), 6,8-dihydroxy-3-methylisocoumarin (7), (-)-(4S)-4,8-dihydroxy-alpha-tetralone (8), naphthalene-1,8-diol (9), 6,7,8-trihydroxy-3-methylisocoumarin (11), 7-hydroxy-2,5-dimethylchromone (12), and tyrosol (14). Compound 4 showed the highest cytotoxic activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8 (colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with IC(50) values of 3.3, 14.7, 5.0 and 1.6 mu m, respectively. Strong synergistic effects were also observed with compound 5 and some of the isolated steroidal compounds.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
A bioassay-guided fractionation of culture filtrates of the fungus Alternaria euphorbiicola, a pathogen of the weed Euphorbia heterophylla, led to the isolation of anhydromevalonolactone (1), tyrosol (2), (R)-( - )-mevalonolactone (3), and cycloglycylproline (4). When tested on the punctured leaves of the host plant, these compounds produced bleached lesions with dark brown margins at concentrations as low as 80 µM. When tested on the leaves of other relevant weeds, only cycloglycylproline showed selective activity against E. heterophylla. This is the first report on the isolation of phytotoxins from A. euphorbiicola and on the phytotoxicity of anhydromevalonolactone, (R)-( - )-mevalonolactone, and cycloglycylproline.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
White wines are generally low in polyphenol content as compared to red wines. However, Champagne wines have been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. In this study, we have investigated the potential neuroprotective effects of Champagne wine extracts, and individual phenolics present in these extracts, against peroxynitrite-induced injury. Organic and aqueous Champagne wine extracts exhibited potent neuroprotective activity against peroxynitrite-induced injury at low concentrations (0.1 mu g/mL). This protection appeared to be in part due to the cellular actions of individual components found in the organic extracts, notably tyrosol, caffeic acid, and gallic acid. These phenolics were observed to exert potent neuroprotection at concentrations between 0.1 and 10 mu M. Together, these data suggest that polyphenols present in Champagne wine may induce a neuroprotective effect against oxidative neuronal injury.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.
Resumo:
The concentration of hydroxytyrosol (3,4-DHPEA) and its secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEA-EA) in virgin olive oil decreased rapidly when the oil was repeatedly used for preparing french fries in deep-fat frying operations. At the end of the first frying process (10 min at 180 degreesC), the concentration of the dihydroxyphenol components was reduced to 50-60% of the original value, and after six frying operations only about 10% of the initial components remained. However, tyrosol (p-HPEA) and its derivatives (p-HPEA-EDA and p-HPEA-EA) in the oil were much more stable during 12 frying operations. The reduction in their original concentration was much smaller than that for hydroxytyrosol and its derivatives and showed a roughly linear relationship with the number of frying operations. The antioxidant activity of the phenolic extract measured using the DPPH test rapidly diminished during the first six frying processes, from a total antioxidant activity higher than 740,mumol of Trolox/kg down to less than 250 mumol/kg. On the other hand, the concentration of polar compounds, oxidized triacylglycerol monomers (oxTGs), dimeric TGs, and polymerized TGs rapidly increased from the sixth frying operation onward, when the antioxidant activity of the phenolic extract was very low, and as a consequence the oil was much more susceptible to oxidation. The loss of antioxidant activity in the phenolic fraction due to deep-fat frying was confirmed by the storage oil and oil-in-water emulsions containing added extracts from olive oil used for 12 frying operations.
Resumo:
We have conducted a detailed investigation into the absorption, metabolism and microflora-dependent transformation of hydroxytyrosol ( HT), tyrosol (TYR) and their conjugated forms, such as oleuropein (OL). Conjugated forms underwent rapid hydrolysis under gastric conditions, resulting in significant increases in the amount of free HT and TYR entering the small intestine. Both HT and TYR transferred across human Caco-2 cell monolayers and rat segments of jejunum and ileum and were subject to classic phase I/II biotransformation. The major metabolites identified were an O-methylated derivative of HT, glucuronides of HT and TYR and a novel glutathionylated conjugate of HT. In contrast, there was no absorption of OL in either model. However, OL was rapidly degraded by the colonic microflora resulting in the formation of HT. Our study provides additional information regarding the breakdown of complex olive oil polyphenols in the GI tract, in particular the stomach and the large intestine.
Resumo:
We investigated the anti-proliferative effects of an olive oil polyphenolic extract on human colon adenocarcinoma cells. Analysis indicated that the extract contained hydroxytyrosol, tyrosol and the various secoiridoid derivatives, including oleuropein. This extract exerted a strong inhibitory effect on cancer cell proliferation, which was linked to the induction of a G2/M phase cell cycle block. Following treatment with the extract (50 mu g/ml) the number of cells in the G2/M phase increased to 51.82 +/- 2.69% relative to control cells (15.1 +/- 2.5%). This G2/M block was mediated by the ability of olive oil polyphenols (50 mu g/ml) to exert rapid inhibition of p38 (38.7 +/- 4.7%) and CREB (28.6 +/- 5.5%) phosphorylation which led to a downstream reduction in COX-2 expression (56.9 +/- 9.3%). Our data suggest that olive oil polyphenols may exert chemo preventative effects in the large intestine by interacting with signalling pathways responsible for colorectal cancer development. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aims: While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. Results: In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Innovation: Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Conclusion: Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex. Antioxid. Redox Signal. 00, 000-000.
Resumo:
There is evidence that various phenolic compounds (such as oleuropein, tyrosol and hydroxytyrosol) found in virgin olive oil may be responsible for the beneficial effects on cardiovascular disease. In the EU there is an authorized health claim that‘olive oil polyphenols contribute to the protection of blood lipids from oxidative stress’ on the basis of human studies showing significantly reduced levels of oxidized LDL in plasma after virgin olive oil consumption. The claim may be used only for olive oil that contains at least 5 mg of hydroxytyrosol and its derivatives per 20 g of olive oil. Other claims proposed (including maintenance of normal blood pressure and HDL cholesterol concentration, and anti-inflammatory properties) were rejected.