994 resultados para Typing techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤ 6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A network was established to acquire basic knowledge of Cryptococcus neoformans in IberoAmerican countries. To this effect, 340 clinical, veterinary, and environmental isolates from Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Guatemala, and Spain were typed by using M13 polymerase chain reaction-fingerprinting and orotidine monophosphate pyrophosphorylase (URA5) gene restriction fragment length polymorphsm analysis with Hhal and Sau961 in a double digest. Both techniques grouped all isolates into eight previously established molecular types. The majority of the isolates, 68.2% (n=232), were VNI (var. grubii, serotype A), which accords with the fact that this variety causes most human cryptococcal infections worldwide. A smaller proportion, 5.6% (n=19), were VNII (var. grubii, serotype A); 4.1% (n=14), VNIII (AD hybrid), with 9 isolates having a polymorphism in the URA5 gene; 1.8% (n=6), VNIV (var. neoformans, serotype D); 3.5% (n=12), VGI; 6.2% (n=21), VGII; 9.1% (n=31), VGIII, and 1.5% (n=5) VGIV, with all four VG types containing var. gattii serotypes B and C isolates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In healthy individuals, Candida species are considered commensal yeasts of the oral cavity. However, these microorganisms can also act as opportunist pathogens, particularly the so-called non-albicans Candida species that are increasingly recognized as important agents of human infection. Several surveys have documented increased rates of C. glabrata, C. tropicalis, C. guilliermondii, C. dubliniensis, C. parapsilosis, and C. krusei in local and systemic fungal infections. Some of these species are resistant to antifungal agents. Consequently, rapid and correct identification of species can play an important role in the management of candidiasis. Conventional methods for identification of Candida species are based on morphological and physiological attributes. However, accurate identification of all isolates from clinical samples is often complex and time-consuming. Hence, several manual and automated rapid commercial systems for identifying these organisms have been developed, some of which may have significant sensitivity issues. To overcome these limitations, newer molecular typing techniques have been developed that allow accurate and rapid identification of Candida species. This study reviewed the current state of identification methods for yeasts, particularly Candida species. © 2013 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Restriction fragment length polymorphism (RFLP) analysis is an economic and fast technique for molecular typing but has the drawback of difficulties in accurately sizing DNA fragments and comparing banding patterns on agarose gels. We aimed to improve RFLP for typing of the important human pathogen Streptococcus pneumoniae and to compare the results with the commonly used typing techniques of pulsed-field gel electrophoresis and multilocus sequence typing. We designed primers to amplify a noncoding region adjacent to the pneumolysin gene. The PCR product was digested separately with six restriction endonucleases, and the DNA fragments were analyzed using an Agilent 2100 bioanalyzer for accurate sizing. The combined RFLP results for all enzymes allowed us to assign each of the 47 clinical isolates of S. pneumoniae tested to one of 33 RFLP types. RFLP analyzed using the bioanalyzer allowed discrimination between strains similar to that obtained by the more commonly used techniques of pulsed-field gel electrophoresis, which discriminated between 34 types, and multilocus sequence typing, which discriminated between 35 types, but more quickly and with less expense. RFLP of a noncoding region using the Agilent 2100 bioanalyzer could be a useful addition to the molecular typing techniques in current use for S. pneumoniae, especially as a first screen of a local population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease. METHODS: Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis. RESULTS: Statistically different bacterial signatures (P<0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of Veillonella and Streptococcus, with a moderate number of Capnocytophaga. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (Selenomonas, Eubacterium, Dialister). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease. CONCLUSIONS: Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent molecular-typing studies suggest cross-infection as one of the potential acquisition pathways for Pseudomonas aeruginosa in patients with cystic fibrosis (CF). In Australia, there is only limited evidence of unrelated patients sharing indistinguishable P. aeruginosa strains. We therefore examined the point-prevalence, distribution, diversity and clinical impact of P. aeruginosa strains in Australian CF patients nationally. 983 patients attending 18 Australian CF centres provided 2887 sputum P. aeruginosa isolates for genotyping by enterobacterial repetitive intergenic consensus-PCR assays with confirmation by multilocus sequence typing. Demographic and clinical details were recorded for each participant. Overall, 610 (62%) patients harboured at least one of 38 shared genotypes. Most shared strains were in small patient clusters from a limited number of centres. However, the two predominant genotypes, AUST-01 and AUST-02, were widely dispersed, being detected in 220 (22%) and 173 (18%) patients attending 17 and 16 centres, respectively. AUST-01 was associated with significantly greater treatment requirements than unique P. aeruginosa strains. Multiple clusters of shared P. aeruginosa strains are common in Australian CF centres. At least one of the predominant and widespread genotypes is associated with increased healthcare utilisation. Longitudinal studies are now needed to determine the infection control implications of these findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an important cause of pulmonary infection in cystic fibrosis (CF). Its correct identification ensures effective patient management and infection control strategies. However, little is known about how often CF sputum isolates are falsely identified as P. aeruginosa. We used P. aeruginosa-specific duplex real-time PCR assays to determine if 2,267 P. aeruginosa sputum isolates from 561 CF patients were correctly identified by 17 Australian clinical microbiology laboratories. Misidentified isolates underwent further phenotypic tests, amplified rRNA gene restriction analysis, and partial 16S rRNA gene sequence analysis. Participating laboratories were surveyed on how they identified P. aeruginosa from CF sputum. Overall, 2,214 (97.7%) isolates from 531 (94.7%) CF patients were correctly identified as P. aeruginosa. Further testing with the API 20NE kit correctly identified only 34 (59%) of the misidentified isolates. Twelve (40%) patients had previously grown the misidentified species in their sputum. Achromobacter xylosoxidans (n = 21), Stenotrophomonas maltophilia (n = 15), and Inquilinus limosus (n = 4) were the species most commonly misidentified as P. aeruginosa. Overall, there were very low rates of P. aeruginosa misidentification among isolates from a broad cross section of Australian CF patients. Additional improvements are possible by undertaking a culture history review, noting colonial morphology, and performing stringent oxidase, DNase, and colistin susceptibility testing for all presumptive P. aeruginosa isolates. Isolates exhibiting atypical phenotypic features should be evaluated further by additional phenotypic or genotypic identification techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Burkholderia cepacia complex (Bcc) is a group of significant opportunistic respiratory pathogens which affect people with cystic fibrosis. In this study, we sought to ascertain the epidemiology and geographic species distribution of 116 Bcc isolates collected from people with CF in Australia and New Zealand. We performed a combination of recA-based PCR, amplified rDNA restriction analysis (ARDRA), pulsed-field gel electrophoresis and repetitive extragenic palindromic PCR on each isolate. Each Burkholderia cenocepacia isolate was also screened by PCR for the presence of the B. cepacia epidemic strain marker. One hundred and fourteen isolates were assigned to a species using recA-based PCR and ARDRA. B. cenocepacia, B. multivorans and B. cepacia accounted for 45.7%, 29.3% and 11.2% of the isolates, respectively. Strain analysis of B. cenocepacia revealed that 85.3% of the isolates were unrelated. One related B. cenocepacia strain was identified amongst 15 people. Whilst full details of person-to-person contact was not available, all patients attended CF centres in Queensland (Qld) and New South Wales (NSW). Although person-to-person transmission of B. cenocepacia strains has occurred in Australia, the majority of CF-related Bcc infections in Australia and New Zealand are most likely acquired from the environment.