964 resultados para Type V scretion system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Escherichia coli enteroagregativa (EAEC) é um patotipo emergente e heterogêneo que causa a diarréia aguda ou persistente em indivíduos de diferentes faixas etárias e em pacientes imunocomprometidos. Além disso, EAEC é um dos principais agentes etiológicos da diarréia dos viajantes. O padrão de aderência agregativa de EAEC está associado ao plasmídeo de aderência agregativa (pAA). Genes presentes no plasmídeo e no cromossomo codificam proteínas envolvidas na secreção extracelular de fatores de virulência na superfície ou diretamente na célula hospedeira. A capacidade de produção de muco e biofilme, elaboração de toxinas, aderência e indução de inflamação intensa na mucosa intestinal são importantes características da patogenicidade de EAEC. Nesse estudo, determinamos o perfil genotípico de genes do sistema de secreção Tipo V (SST5) e sistema de secreção Tipo VI (SST6) em cepas de EAEC. Os genes do SST5 ocorreram com mais frequência que os genes do SST6. A presença de pelo menos um gene do SST5 foi detectada em 79% das cepas, enquanto que os genes relacionados ao SST6 foram detectados em apenas 42% das cepas analisadas. A produção de biofilme foi observada em teste quantitativo e verificamos que 67% das cepas produziram biofilme. No teste qualitativo, o tipo de biofilme que predomina é o biofilme moderado (11 cepas), seguido do biofilme forte (9 cepas) e do biofilme discreto (4 cepas). A presença ou ausência de genes do SST5 e SST6 não parece interferir com a capacidade de produção de biofilme, nem com o tipo de biofilme formado. Em ensaios de citotoxicidade, apenas 25% das cepas EAEC (sobrenadante) causaram redução significativa na viabilidade de células T84 avaliada pelo teste de redução com MTT. Nossos resultados mostram que as cepas EAEC isoladas de crianças com diarréia aguda ou de grupo controle são invasoras para células T84. Ao compararmos a capacidade invasora das cepas clinicas e controle, observamos que a média do índice de internalização obtido nas 15 cepas do grupo clinico foi de 5,7% 1,7 e para as 9 cepas do grupo controle foi de 2.4 % 0,7; entretanto essa diferença observada não foi estatisticamente significativa. Não foi possível correlacionar o perfil genotípico dos genes do SST5 e SST6 com o perfil fenotípico analisado (formação de biofilme, citotoxicidade e invasão).O que pode ser atribuído a heterogeneidade genotípica e fenotípica, uma característica relevante de cepas EAEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe coherent population trapping (CPT) in a two-electron atom-Yb-174-using the S-1(0), F= 0 -> P-3(1), F `= 1 transition. CPT is not possible for such a transition according to one-electron theory because the magnetic sublevels form a V-type system, but in a two-electron atom like Yb, the interaction of the electrons transforms the level structure into a V-type system, which allows the formation of a dark state and hence the observation of CPT. Since the two levels involved are degenerate, we use a magnetic field to lift the degeneracy. The single fluorescence dip then splits into five dips-the central unshifted one corresponds to coherent population oscillation, while the outer four are due to CPT. The linewidth of the CPT resonance is about 300 kHz and is limited by the natural linewidth of the excited state, which is to be expected because the excited state is involved in the formation of the dark state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propagation of a few-cycle laser pulse in a V-type three-level system (fine structure levels of rubidium) is investigated numerically. The full three-level Maxwell-Bloch equations without the rotating wave approximation and the standing slowly varying envelope approximation are solved by using a finite-difference time-domain method. It is shown that, when the usual unequal oscillator strengths are considered, self-induced transparency cannot be recovered and higher spectral components can be produced even for small-area pulses. (c) 2005 Pleiades Publishing, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type IV secretion system (T4SS) is used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Xanthomonas citri subsp. citri contains two copies of the T4SS, one in the chromosome and the other is plasmid-encoded. To understand the conditions that induce expression of the T4SS in Xcc, we analyzed, in vitro and in planta, the expression of 18 ORFs from the T4SS and 7 hypothetical flanking genes by RT-qPCR. As a positive control, we also evaluated the expression of 29 ORFs from the type III secretion system (T3SS), since these genes are known to be expressed during plant infection condition, but not necessarily in standard culture medium. From the 29 T3SS genes analyzed by qPCR, only hrpA was downregulated at 72 h after inoculation. All genes associated with the T4SS were downregulated on Citrus leaves 72 h after inoculation. Our results showed that unlike the T3SS, the T4SS is not induced during the infection process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N-terminal Fic domain and a C-terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS-mediated translocation into host cells. A proteolysis resistant fragment (residues 10-302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α-[(32)P]-ATP. Its crystal structure, determined to 2.9-Å resolution by the SeMet-SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β-rich domain at the C-terminus. On crystal soaking with ATP/Mg(2+), additional electron density indicated the presence of a PP(i) /Mg(2+) moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg(2+) and target tyrosine. The model is consistent with an in-line nucleophilic attack of the deprotonated side-chain hydroxyl group onto the α-phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence-independent mechanism of target positioning through antiparallel β-strand interactions between enzyme and target is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon-induced transmembrane protein 5 or bone-restricted i ifitm-like gene (Bril) was first identified as a bone gene in 2008, although no in vivo role was identified at that time. A role in human bone has now been demonstrated with a number of recent studies identifying a single point mutation in Bril as the causative mutation in osteogenesis imperfecta type V (OI type V). Such a discovery suggests a key role for Bril in skeletal regulation, and the completely novel nature of the gene raises the possibility of a new regulatory pathway in bone. Furthermore, the phenotype of OI type V has unique and quite divergent features compared with other forms of OI involving defects in collagen biology. Currently it appears that the underlying genetic defect in OI type V may be unrelated to collagen regulation, which also raises interesting questions about the classification of this form of OI. This review will discuss current knowledge of OI type V, the function of Bril, and the implications of this recent discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control role of the relative phase between the probe and driving fields on the gain and dispersion in an open Lambda-type inversionless lasing system with spontaneously generated coherence (SGC) is investigated. It is shown that the inversionless gain and dispersion are quite sensitive to variation in the relative phase; by adjusting the value of the relative phase, electromagnetically induced transparency (EIT), a high refractive index with zero absorption and a larger inversionless gain can be realized. It is also shown that, in the contributions to the inversionless gain ( absorption) and dispersion, the contribution from SGC is always much larger than that from the dynamically induced coherence for any value of the relative phase. Our analysis shows that variation in the SGC effect will cause the spectrum regions and values of the inversionless gain and dispersion to vary evidently. We also found that, under the same conditions, the values of the inversionless gain and dispersion in the open system are evidently larger than those in the corresponding closed system; EIT occurs in the open system but cannot occur in the closed system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.