934 resultados para Two-quasiparticle states
Resumo:
Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.
Resumo:
The learner licence is an important component of the graduated driver licensing system. This research describes the driving and licensing experiences of learner drivers in Queensland and New South Wales licensed prior to the changes made to the system in mid-2007. The sample consisted of 392 participants who completed a telephone interview just after they obtained their provisional licence. The results suggest that learner drivers in the two states had many similar experiences when they were obtaining a learner licence. However, once a learner licence was obtained, there were differences in the amount of practice, the supervisor learners practised with, the type of vehicle they used and the amount of unlicensed driving. This paper provides important baseline descriptive data that can be used to measure the impact of the changes that were introduced to the learner licence phase in mid-2007 in both of these states.
Resumo:
Objective While many jurisdictions internationally now require learner drivers to complete a specified number of hours of supervised driving practice before being able to drive unaccompanied, very few require learner drivers to complete a log book to record this practice and then present it to the licensing authority. Learner drivers in most Australian jurisdictions must complete a log book that records their practice thereby confirming to the licensing authority that they have met the mandated hours of practice requirement. These log books facilitate the management and enforcement of minimum supervised hours of driving requirements. Method Parents of learner drivers in two Australian states, Queensland and New South Wales, completed an online survey assessing a range of factors, including their perceptions of the accuracy of their child’s learner log book and the effectiveness of the log book system. Results The study indicates that the large majority of parents believe that their child’s learner log book is accurate. However, they generally report that the log book system is only moderately effective as a system to measure the number of hours of supervised practice a learner driver has completed. Conclusions The results of this study suggest the presence of a paradox with many parents possibly believing that others are not as diligent in the use of log books as they are or that the system is too open to misuse. Given that many parents report that their child’s log book is accurate, this study has important implications for the development and ongoing monitoring of hours of practice requirements in graduated driver licensing systems.
Resumo:
The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study a continuous-variable entangled state composed of two states which are squeezed in two opposite quadratures in phase space. Various entanglement conditions are tested for the entangled squeezed state and we study decoherence models for noise, producing a mixed entangled squeezed state. We briefly describe a probabilistic protocol for entanglement swapping based on the use of this class of entangled states and the main features of a general generation scheme.
Resumo:
The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.
Resumo:
We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.
Resumo:
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Resumo:
We investigate the role of two-quasiparticle isomeric states along the proton drip line, using configuration-constrained potential-energy-surface calculations. In contrast to even-even nuclei, odd-odd nuclei can have coexisting low-lying two-quasiparticle states. The low excitation energy and high angular momentum can lead to long-lived isomers. Also, because of the hindrance by spin selection, the probabilities of beta and proton decays from high-spin isomers can be reduced significantly. The present calculations reproduce reasonably well the available data for observed isomers in such nuclei. Unobserved high-spin isomers are predicted, which could be useful for future experimental studies of exotic nuclei at and beyond the proton drip line.
Resumo:
The optimal entanglement manipulation for a single copy of mixed states of two qubits is to transform it to a Bell diagonal state. In this paper we derive an explicit form of the local operation that can realize such a transformation. The result obtained is universal for arbitrary entangled two-qubit states and it discloses that the corresponding local filter is not unique for density matrices with rank n = 2 and can be exclusively determined for that with n = 3 and 4. As illustrations, a four-parameter family of mixed states are explored, the local filter as well as the transformation probability are given explicitly, which verify the validity of the general result.
Resumo:
A systematic study of neutron-rich even-even Fe isotopes with a neutron number from 32 to 42 is carried out by using the projected shell model. Calculations are performed up to the spin I=20 state. Irregularities found in the yrast spectra and in B (E2) values are discussed in terms of neutron excitations to the high-j orbital g(9/2). Furthermore, the neutron two-quasiparticle structure of a low-K negative-parity band and the proton two-quasiparticle structure of a high-K positive-parity band are predicted to exist near the yrast region. Our study reveals a soft nature for the ground state of N approximate to 40 isotopes and emphasizes the important role of the neutron g(9/2) orbital in determining the structure properties for both low- and high-spin states in these nuclei.
Resumo:
We elucidate the dependence of purity and entanglement of two-photon states generated by spontaneous parametric down-conversion on the parameters of the source, such as crystal length, pump beam divergence, frequency bandwidth, and detectors angular aperture. The effect of crystal anisotropy is taken into account. Numerical simulations are presented for two types of commonly used source configurations. (C) 2009 Elsevier B.V. All rights reserved.