939 resultados para Two-point correlation tensor
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED(2) and QED(3) with N fermion flavors including also a Thirring coupling. We start from two-point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory in both D=2 and D=3 dimensions. We find an effective generating functional in terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the Lagrangian density (ψ) over bar (r)(ipartial derivative-m)psi(r) into a bosonic one in both dimensions. This map is nonlocal but it is independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant.
Resumo:
The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
We investigate difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations. We formulate conditions under which all solutions to the discrete problem satisfy certain a priori bounds which axe independent of the step-size. As a result, the nonexistence of spurious solutions are guaranteed. Some existence and convergence theorems for solutions to the discrete problem are also presented. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Difference equations which may arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations are investigated and conditions are formulated under which solutions to the discrete problem are unique. Some existence, uniqueness implies existence, and convergence theorems for solutions to the discrete problem are also presented.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
This article discusses, from the standpoint of cellular biology, the deterministic and indeterministic androgenesis theories. The role of the vacuole and of various types of stresses on deviation of the microspore from normal development and the point where androgenetic competence is acquired are examined. Based on extensive literature review and data on wheat studies from our laboratory, a model for androgenetic capacity of pollen grain is proposed. A two point deterministic model for in vitro androgenesis is our proposal for acquisition of androgenetic potential of the pollen grain: the first switch point would be early meiosis and the second switch point the uninucleate pollen stage, because the elimination of cytoplasmatic sporophytic determinants takes place at those two strategic moments. Any abnormality in this process allowing the maintenance of sporophytic informational molecules results in the absence of establishment of a gametophytic program, allowing the reactivation of the embryogenic process
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
We study initial-boundary value problems for linear evolution equations of arbitrary spatial order, subject to arbitrary linear boundary conditions and posed on a rectangular 1-space, 1-time domain. We give a new characterisation of the boundary conditions that specify well-posed problems using Fokas' transform method. We also give a sufficient condition guaranteeing that the solution can be represented using a series. The relevant condition, the analyticity at infinity of certain meromorphic functions within particular sectors, is significantly more concrete and easier to test than the previous criterion, based on the existence of admissible functions.
Resumo:
We consider the two-point boundary value problem for stiff systems of ordinary differential equations. For systems that can be transformed to essentially diagonally dominant form with appropriate smoothness conditions, a priori estimates are obtained. Problems with turning points can be treated with this theory, and we discuss this in detail. We give robust difference approximations and present error estimates for these schemes. In particular we give a detailed description of how to transform a general system to essentially diagonally dominant form and then stretch the independent variable so that the system will satisfy the correct smoothness conditions. Numerical examples are presented for both linear and nonlinear problems.