900 resultados para Two-person zero-sum games
Resumo:
We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.
Resumo:
A new approach based on occupation measures is introduced for studying stochastic differential games. For two-person zero-sum games, the existence of values and optimal strategies for both players is established for various payoff criteria. ForN-person games, the existence of equilibria in Markov strategies is established for various cases.
Resumo:
Competition for available resources is natural amongst coexisting species, and the fittest contenders dominate over the rest in evolution. The. dynamics of this selection is studied using a simple linear model. It has similarities to features of quantum computation, in particular conservation laws leading to destructive interference. Compared to an altruistic scenario, competition introduces instability and eliminates the weaker species in a finite time.
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
In this paper a theory for two-person zero sum multicriterion differential games is presented. Various solution concepts based upon the notions of Pareto optimality (efficiency), security and equilibrium are defined. These are shown to have interesting applications in the formulation and analysis of two target or combat differential games. The methods for obtaining outcome regions in the state space, feedback strategies for the players and the mode of play has been discussed in the framework of bicriterion zero sum differential games. The treatment is conceptual rather than rigorous.
Resumo:
We study the thermodynamic properties of a certain type of space-inhomogeneous Fermi and quantum spin systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities stays macroscopic, but very small as compared to the side-length of the box containing fermions or spins. The present study is however not restricted to "macroscopic inhomogeneities" and also includes the (periodic) microscopic and mesoscopic cases. We prove that - as in the homogeneous case - the pressure is, up to a minus sign, the conservative value of a two-person zero-sum game, named here thermodynamic game. Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning what kind of object equilibrium states should be in the thermodynamic limit. However, we give rigorous statements on correlations functions for large boxes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763465]
Resumo:
We have studied two person stochastic differential games with multiple modes. For the zero-sum game we have established the existence of optimal strategies for both players. For the nonzero-sum case we have proved the existence of a Nash equilibrium.
Resumo:
In this paper, we propose new solution concepts for multicriteria games and compare them with existing ones. The general setting is that of two-person finite games in normal form (matrix games) with pure and mixed strategy sets for the players. The notions of efficiency (Pareto optimality), security levels, and response strategies have all been used in defining solutions ranging from equilibrium points to Pareto saddle points. Methods for obtaining strategies that yield Pareto security levels to the players or Pareto saddle points to the game, when they exist, are presented. Finally, we study games with more than two qualitative outcomes such as combat games. Using the notion of guaranteed outcomes, we obtain saddle-point solutions in mixed strategies for a number of cases. Examples illustrating the concepts, methods, and solutions are included.
Resumo:
We study zero-sum risk-sensitive stochastic differential games on the infinite horizon with discounted and ergodic payoff criteria. Under certain assumptions, we establish the existence of values and saddle-point equilibria. We obtain our results by studying the corresponding Hamilton-Jacobi-Isaacs equations. Finally, we show that the value of the ergodic payoff criterion is a constant multiple of the maximal eigenvalue of the generators of the associated nonlinear semigroups.
Resumo:
Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron-Frobenius eigenvalue of the associated controlled nonlinear kernels. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider a discrete time partially observable zero-sum stochastic game with average payoff criterion. We study the game using an equivalent completely observable game. We show that the game has a value and also we present a pair of optimal strategies for both the players.
Resumo:
On several classes of n-person NTU games that have at least one Shapley NTU value, Aumann characterized this solution by six axioms: Non-emptiness, efficiency, unanimity, scale covariance, conditional additivity, and independence of irrelevant alternatives (IIA). Each of the first five axioms is logically independent of the remaining axioms, and the logical independence of IIA is an open problem. We show that for n = 2 the first five axioms already characterize the Shapley NTU value, provided that the class of games is not further restricted. Moreover, we present an example of a solution that satisfies the first five axioms and violates IIA for two-person NTU games (N, V) with uniformly p-smooth V(N).
Resumo:
In this paper game theory is used to analyse the effect of a number of service failures during the execution of a grid orchestration. A service failure may be catastrophic in that it causes an entire orchestration to fail. Alternatively, a grid manager may utilise alternative services in the case of failure, allowing an orchestration to recover, A risk profile provides a means of modelling situations in a way that is neither overly optimistic nor overly pessimistic. Risk profiles are analysed using angel and daemon games. A risk profile can be assigned a valuation through an analysis of the structure of its associated Nash equilibria. Some structural properties of valuation functions, that show their validity as a measure for risk, are given. Two main cases are considered, the assessment of Orc expressions and the arrangement of a meeting using reputations.
Resumo:
A correlation scheme (leading to a special equilibrium called “soft” correlated equilibrium) is applied for two-person finite games in extensive form with perfect information. Randomization by an umpire takes place over the leaves of the game tree. At every decision point players have the choice either to follow the recommendation of the umpire blindly or freely choose any other action except the one suggested. This scheme can lead to Pareto-improved outcomes of other correlated equilibria. Computational issues of maximizing a linear function over the set of soft correlated equilibria are considered and a linear-time algorithm in terms of the number of edges in the game tree is given for a special procedure called “subgame perfect optimization”.
Resumo:
The “Nash program” initiated by Nash (Econometrica 21:128–140, 1953) is a research agenda aiming at representing every axiomatically determined cooperative solution to a game as a Nash outcome of a reasonable noncooperative bargaining game. The L-Nash solution first defined by Forgó (Interactive Decisions. Lecture Notes in Economics and Mathematical Systems, vol 229. Springer, Berlin, pp 1–15, 1983) is obtained as the limiting point of the Nash bargaining solution when the disagreement point goes to negative infinity in a fixed direction. In Forgó and Szidarovszky (Eur J Oper Res 147:108–116, 2003), the L-Nash solution was related to the solution of multiciteria decision making and two different axiomatizations of the L-Nash solution were also given in this context. In this paper, finite bounds are established for the penalty of disagreement in certain special two-person bargaining problems, making it possible to apply all the implementation models designed for Nash bargaining problems with a finite disagreement point to obtain the L-Nash solution as well. For another set of problems where this method does not work, a version of Rubinstein’s alternative offer game (Econometrica 50:97–109, 1982) is shown to asymptotically implement the L-Nash solution. If penalty is internalized as a decision variable of one of the players, then a modification of Howard’s game (J Econ Theory 56:142–159, 1992) also implements the L-Nash solution.