980 resultados para Two-lap collisional mountain belt spiral
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
As powerful tools to study the lithosphere dynamics, the effective elastic thickness (Te) as well as the envelope of yielding stress of lithosphere have been attracted great attention of geoscientists in the past thirty years. The oceanic lithosphere, contrary to the continental lithosphere, has more fruits for its simple structures and evolution process. In continent, the lithosphere commonly is complex and variable in the rheological, thermal structures, and has a complicated history. Therefore, the application of the effective elastic thickness in continent is still a subject to learn in a long time. Te, with the definition of the thickness of an elastic plate in theory flexured by the equal benging of the real stress in the lithosphere plate (Turcotte, 1982), marks the depth of transition between elastic and fluid behaviors of rocks subjected to stress exceeding 100 MPa over the geological timescales (McNutt, 1990). There are three methods often adapted: admittance or isostatic response function, coherence and forwarding. In principle, the models of Te consist of thermal-rheological, non-linear Maxwell, non-linear work hardening and rheological layered models. There is a tentative knowledge of Te that it is affected by the following factors: crustal thickness, crust-mantle decoupling, plate bending, boundary conditions of plate (end forces and bending moments), stress state, sedimentary layer, faulting effect, variation in the mountain belts' strike, foreland basin, inheritance of tectonic evolution, convection of mantle, seismic depth and lithosphere strength. In this thesis, the author introduces the geological sketch of the Dabie collisional orogenic belt and the Hefei Basin. The Dabie Mts. is famous for the ultra-high pressure metamorphism. The crustal materials subducted down to the depth of at least 100 km and exhumed. So that the front subjects arise such as the deeply subduction of continent, and the post-collisional crust-mantle interaction. In a geological journey at June of 1999, the author found the rarely variolitic basaltic andesite in the Dabie Mts. It occurs in Susong Group, near Zhifenghe Countryside, Susong County, Anhui Province. It is just to the south of the boundary between the high-grade Susong melange and the ultra-high grade South Dabie melange. It has a noticeable knobby or pitted appearance in the surface. The size of the varioles is about 1-4 mm. In hand-specimen and under microscope, there are distinct contacts between the varioles and the matrice. The mineralogy of the varioles is primarily radiate plagioclase, with little pyroxene, hornblende and quartz. The pyroxene, hornblende and quartz are in the interstices between plagioclase. The matrix is consisted of glass, and micro-crystals of chlorite, epidote and zoisite. It is clearly subjected and extensive alteration. The andesite has an uncommon chemical composition. The SiO_2 content is about 56.8%, TiO_2 = 0.9%, MgO = 6.4%, (Fe_2O_3)_(Total) = 6.7% ~ 7.6%, 100 Mg/(Mg+Fe) = 64.1 ~ 66.2. Mg# is significantly high. The andesite has higher abundances of large-lithophile trace elements (e.g. K, Ba, Sr, LREE), e.g. La/Nd = 5.56-6.07, low abundances of high-strength-field elements (HFSE, e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subducted-related magmas (Pearcce, 1982; Sun and McDonaugh, 1989). In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a characteristic of the continental margins (Pearce, 1982). There has a strongly enrichment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)_N is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)_N = 28.63-36.74, (La/Y)_N = 70.33 - 82.84. The elements Y and Yb depleted greatly, Y < 20 ppm, Y_N = 2.74-2.84, Yb_N = 2.18 - 2.35. From the La-(La/Sm) diagram, the andesite is derived from partial melting. But the epsilone value of Nd is -18.7 ~ -19.2, so that the material source may be the mantle materials affected by the crustal materials. The Nd model age is 1.9 Ga indicating that the basaltic andesite was resulted from the post-collisional crust-mantle interaction between the subducted Yangze carton and the mantle of Sino-Korea carton. To obtain the Te of the lithosphere beneath the Dabie Mts. and the Hefei Basin, the author applies the coherence method in this thesis. The author makes two topography-gravity profiles (profiles 7~(th) and 9~(th)) across the Dabie Mts. and the Hefei Basin, and calculates the auto-coherence, across coherence, power spectrum, across power spectrum of the topography and gravity of the two profiles. From the relationships between the coherence and the wave-number of profiles. From the relationships between the coherence and the wave-number of profiles 7~(th) and 9~(th), it is obtained that the characteristic wavelengths respectively are 157 km and 126 km. Consequently the values of effective elastic thickness are 6.5 km and 4.8 km, respectively. However, the Te values merely are the minimum value of the lithosphere because the coherencemethod in a relative small region will generate a systemic underestimation. Why there is a so low Te value? In order to check the strength of the lithosphere beneath the Dabie Mts., the authore tries to outline the yielding-stress envelope of the lithosphere. It is suggested that the elastic layers in the crust and upper mantle are 18 km and 35 km, respectively. Since there exist a low viscosity layer about 3-5 km thickness, so it is reasonable that the decoupling between the crust and mantle occurred. So the effective thickness of the lithosphere can be estimated from the two elastic layers. Te is about 34 km. This is the maximum strength of the lithosphere. We can make an approximately estimation about the strength of the lithosphere beneath the Dabie Mts.: Te is about 20-30 km. The author believes that the following factors should be responsible for the low Te value: (1) the Dabie Mts. has elevated strongly since K_3-J_1. The north part of the Dabie Mts. elevates faster than the south part today; (2) there occur large active striking faults in this area. And in the east, the huge Tan-Lu striking fault anyway tends to decrease the lithosphere strength; (3) the lithosphere beneath the Dabie Mts. is heter-homogeneous in spatio-temporal; (4) the study area just locates in the adjacent region between the eastern China where the lithosphere thickness is significantly reduced and the normal western China. These factors will decrease the lithosphere strength.
Resumo:
The Sunsas-Aguapei province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsas orogens. The Sunsas orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwestern most of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsas and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilandia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Parana shear zone network (1.18-1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca-Aguapei basin (1.17-1.15 Ga). The Sunsas belt is comprised by the metamorphosed Sunsas and Vibosi sequences, the Rincon del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield epsilon(Nd(t)) signatures (-0.5 to -4.5) and geochemistry (S,1, A-types) suggesting their origin associated with a continental arc setting. The Sunsas belt evolution is marked by ""tectonic fronts"" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paragua microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapei flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsas dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilandia belt (1.13-1.00 Ga). Conversely, the Aguapei aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsas orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Parana shear zone event and the Sunsas belt, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Curved mountain belts have always fascinated geologists and geophysicists because of their peculiar structural setting and geodynamic mechanisms of formation. The need of studying orogenic bends arises from the numerous questions to which geologists and geophysicists have tried to answer to during the last two decades, such as: what are the mechanisms governing orogenic bends formation? Why do they form? Do they develop in particular geological conditions? And if so, what are the most favorable conditions? What are their relationships with the deformational history of the belt? Why is the shape of arcuate orogens in many parts of the Earth so different? What are the factors controlling the shape of orogenic bends? Paleomagnetism demonstrated to be one of the most effective techniques in order to document the deformation of a curved belt through the determination of vertical axis rotations. In fact, the pattern of rotations within a curved belt can reveal the occurrence of a bending, and its timing. Nevertheless, paleomagnetic data alone are not sufficient to constrain the tectonic evolution of a curved belt. Usually, structural analysis integrates paleomagnetic data, in defining the kinematics of a belt through kinematic indicators on brittle fault planes (i.e., slickensides, mineral fibers growth, SC-structures). My research program has been focused on the study of curved mountain belts through paleomagnetism, in order to define their kinematics, timing, and mechanisms of formation. Structural analysis, performed only in some regions, supported and integrated paleomagnetic data. In particular, three arcuate orogenic systems have been investigated: the Western Alpine Arc (NW Italy), the Bolivian Orocline (Central Andes, NW Argentina), and the Patagonian Orocline (Tierra del Fuego, southern Argentina). The bending of the Western Alpine Arc has been investigated so far using different approaches, though few based on reliable paleomagnetic data. Results from our paleomagnetic study carried out in the Tertiary Piedmont Basin, located on top of Alpine nappes, indicate that the Western Alpine Arc is a primary bend that has been subsequently tightened by further ~50° during Aquitanian-Serravallian times (23-12 Ma). This mid-Miocene oroclinal bending, superimposing onto a pre-existing Eocene nonrotational arc, is the result of a composite geodynamic mechanism, where slab rollback, mantle flows, and rotating thrust emplacement are intimately linked. Relying on our paleomagnetic and structural evidence, the Bolivian Orocline can be considered as a progressive bend, whose formation has been driven by the along-strike gradient of crustal shortening. The documented clockwise rotations up to 45° are compatible with a secondary-bending type mechanism occurring after Eocene-Oligocene times (30-40 Ma), and their nature is probably related to the widespread shearing taking place between zones of differential shortening. Since ~15 Ma ago, the activity of N-S left-lateral strike-slip faults in the Eastern Cordillera at the border with the Altiplano-Puna plateau induced up to ~40° counterclockwise rotations along the fault zone, locally annulling the regional clockwise rotation. We proposed that mid-Miocene strike-slip activity developed in response of a compressive stress (related to body forces) at the plateau margins, caused by the progressive lateral (southward) growth of the Altiplano-Puna plateau, laterally spreading from the overthickened crustal region of the salient apex. The growth of plateaux by lateral spreading seems to be a mechanism common to other major plateaux in the Earth (i.e., Tibetan plateau). Results from the Patagonian Orocline represent the first reliable constraint to the timing of bending in the southern tip of South America. They indicate that the Patagonian Orocline did not undergo any significant rotation since early Eocene times (~50 Ma), implying that it may be considered either a primary bend, or an orocline formed during the late Cretaceous-early Eocene deformation phase. This result has important implications on the opening of the Drake Passage at ~32 Ma, since it is definitely not related to the formation of the Patagonian orocline, but the sole consequence of the Scotia plate spreading. Finally, relying on the results and implications from the study of the Western Alpine Arc, the Bolivian Orocline, and the Patagonian Orocline, general conclusions on curved mountain belt formation have been inferred.
Resumo:
This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.
Resumo:
The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.
Resumo:
Este trabalho representa um estudo de dispersão da componente vertical da onda de superfície de Rayleigh com trajetórias na plataforma Sulamericana. Os registros utilizados são provenientes das estações localizadas no território Brasileiro; sendo a do Rio de Janeiro (RDJ), a de Brasília (BDF), a de Caicó (CAI) e a de Belém (BEB), pois estas são as únicas estações sismológicas no Brasil que têm sensores de período longo e que servem para o estudo de dispersão no intervalo de 4 a 50 segundos, aqui realizados. Os terremotos utilizados estão localizados ao longo da parte leste da cadeia Andina e dentro da plataforma Sulamericana com trajetórias tipicamente continental. Foram selecionados 34 eventos com a utilização dos seguintes critérios práticos: a localização, a magnitude mb e a profundidade, ocorridos durante o período de Janeiro de 1978 até Junho de 1987. O estudo de dispersão aqui abordado significa a determinação da velocidade de grupo e das amplitudes espectrais correspondentes aos harmônicos fundamental e primeiro superior. Normalmente os harmônicos de ordem segunda ou maior são raramente disponíveis na observação. Dois tipos de medidas foram feitas: (i) velocidade de grupo vs. período e (ii) amplitude vs. período. Os estudos de dispersão são fundamentais para determinação da estrutura da crosta e manto superior que estão diretamente relacionados com os fenômenos geológicos. Neste trabalho, regionalização é definida como a identificação das diferentes formas de curvas de dispersão, que estão relacionadas com as trajetórias epicentro-estação ao longo da plataforma Sulamericana e que venham ter uma correlação geológica como está descrito no item 4.3 deste trabalho. A distribuição dos epicentros se faz desde o extremo sul da Argentina até o extremo norte da Venezuela, objetivando iniciar com este trabalho uma sistemática voltada aos estudos de regionalização da plataforma Sulamericana na nossa instituição. Neste trabalho foram observados três tipos distintos de curvas em 27 trajetórias e agrupadas por famílias 1,2 e 3 respectivamente, onde procurou-se correlacionar suas diferentes formas com a geologia regional da plataforma Sulamericana. A obtenção da curva de dispersão foi feita através da técnica do filtro múltiplo (Dziewonski et al, 1969). Este filtro tem a propriedade de separar os harmônicos através das suas velocidades de grupo para cada frequência selecionada, e também de recuperar as amplitudes características dos harmônicos (Herrmann, 1973). O desenvolvimento teórico do filtro bem como suas limitações e forma de uso são tratados por Dziewonski et al (1972). Como parte do trabalho há a implantação, adaptações e o desenvolvimento de parte do fluxograma do filtro múltiplo, bem como a estruturação da digitalização dos dados para o processamento e interpretação não-automática dos resultados do processamento.
Resumo:
Two competing models exist for the formation of the Pennsylvania salient, a widely studied area of pronounced curvature in the Appalachian mountain belt. The viability of these models can be tested by compiling and analyzing the patterns of structures within the general hinge zone of the Pennsylvania salient. One end-member model suggests a NW-directed maximum shortening direction and no rotation through time in the culmination. An alternative model requires a two-phase development of the culmination involving NNW-directed maximum shortening overprinted by WNW-directed maximum shortening. Structural analysis at 22 locations throughout the Valley and Ridge and southern Appalachian Plateau Provinces of Pennsylvania are used to constrain orientations of the maximum shortening direction and establish whether these orientations have rotated during progressive deformation in the Pennsylvania salient's hinge. Outcrops of Paleozoic sedimentary rocks contain several orders of folds, conjugate faults, steeply dipping strike-slip faults, joints, conjugate en echelon gash vein arrays, spaced cleavage, and grain-scale finite strain indicators. This suite of structures records a complex deformation history similar to the Bear Valley sequence of progressive deformation. The available structural data from the Juniata culmination do not show a consistent temporal rotation of shortening directions and generally indicate uniform,
Resumo:
The bedrock topography beneath the Quaternary cover provides an important archive for the identification of erosional processes during past glaciations. Here, we combined stratigraphic investigations of more than 40,000 boreholes with published data to generate a bedrock topography model for the entire plateau north of the Swiss Alps including the valleys within the mountain belt. We compared the bedrock map with data about the pattern of the erosional resistance of Alpine rocks to identify the controls of the lithologic architecture on the location of overdeepenings. We additionally used the bedrock topography map as a basis to calculate the erosional potential of the Alpine glaciers, which was related to the thickness of the LGM ice. We used these calculations to interpret how glaciers, with support by subglacial meltwater under pressure, might have shaped the bedrock topography of the Alps. We found that the erosional resistance of the bedrock lithology mainly explains where overdeepenings in the Alpine valleys and the plateau occur. In particular, in the Alpine valleys, the locations of overdeepenings largely overlap with areas where the underlying bedrock has a low erosional resistance, or where it was shattered by faults. We also found that the assignment of two end-member scenarios of erosion, related to glacial abrasion/plucking in the Alpine valleys, and dissection by subglacial meltwater in the plateau, may be adequate to explain the pattern of overdeepenings in the Alpine realm. This most likely points to the topographic controls on glacial scouring. In the Alps, the flow of LGM and previous glaciers were constrained by valley flanks, while ice flow was mostly divergent on the plateau where valley borders are absent. We suggest that these differences in landscape conditioning might have contributed to the contrasts in the formation of overdeepenings in the Alpine valleys and the plateau.
Resumo:
The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C.
Resumo:
Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.