929 resultados para Two dimensional distribution
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.
Resumo:
We study two-dimensional (2D) turbulence in a doubly periodic domain driven by a monoscale-like forcing and damped by various dissipation mechanisms of the form νμ(−Δ)μ. By “monoscale-like” we mean that the forcing is applied over a finite range of wavenumbers kmin≤k≤kmax, and that the ratio of enstrophy injection η≥0 to energy injection ε≥0 is bounded by kmin2ε≤η≤kmax2ε. Such a forcing is frequently considered in theoretical and numerical studies of 2D turbulence. It is shown that for μ≥0 the asymptotic behaviour satisfies ∥u∥12≤kmax2∥u∥2, where ∥u∥2 and ∥u∥12 are the energy and enstrophy, respectively. If the condition of monoscale-like forcing holds only in a time-mean sense, then the inequality holds in the time mean. It is also shown that for Navier–Stokes turbulence (μ=1), the time-mean enstrophy dissipation rate is bounded from above by 2ν1kmax2. These results place strong constraints on the spectral distribution of energy and enstrophy and of their dissipation, and thereby on the existence of energy and enstrophy cascades, in such systems. In particular, the classical dual cascade picture is shown to be invalid for forced 2D Navier–Stokes turbulence (μ=1) when it is forced in this manner. Inclusion of Ekman drag (μ=0) along with molecular viscosity permits a dual cascade, but is incompatible with the log-modified −3 power law for the energy spectrum in the enstrophy-cascading inertial range. In order to achieve the latter, it is necessary to invoke an inverse viscosity (μ<0). These constraints on permissible power laws apply for any spectrally localized forcing, not just for monoscale-like forcing.
Resumo:
This study aimed to compare the influence of single-standing or connected implants on stress distribution in bone of mandibular overdentures by means of two-dimensional finite element analysis. Two finite element models were designed using software (ANSYS) for 2 situations: bar-clip (BC) group-model of an edentulous mandible supporting an overdenture over 2 connected implants with BC system, and o'ring (OR) group-model of an edentulous mandible supporting an overdenture over 2 single-standing implants with OR abutments. Axial loads (100 N) were applied on either central (L1) or lateral (L2) regions of the models. Stress distribution was concentrated mostly in the cortical bone surrounding the implants. When comparing the groups, BC (L1, 52.0 MPa and L2, 74.2 MPa) showed lower first principal stress values on supporting tissue than OR (L1, 78.4 MPa and L2, 76.7 MPa). Connected implants with BC attachment were more favorable on stress distribution over peri-implant-supporting tissue for both loading conditions.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBGs) in multimode fibre (MMF) has been side-detected with high spatial/spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
Two-dimensional optical power distribution of the out-coupled radiation from UV-inscribed tilted fibre Bragg gratings (TFBG) in multimode fibre (MMF) has been side-detected with high spatial spectral resolution, showing a near-identical radiation mode profile to that measured from the fibre-end detection method. A comparative investigation of the radiation characteristics of TFBGs fabricated in singlemode fibre (SMF) and MMF clearly indicates that the radiation out-coupling is stronger and spatially more confined in MMF. The unique spatial-to-spectral encoding property of the coupling mechanism offers potential application in low-cost WDM devices.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
Resumo:
The aim of this investigation is to evolve a method of solving two-dimensional unsteady flow problems by the method of characteristics. This involves the reduction of the given system of equations to an equivalent system where only interior derivatives occur on a characteristic surface. From this system, four special bicharacteristic directional derivatives are chosen. A finite difference scheme is prescribed for solving the equations. General rectangular lattices are also considered. As an example, we investigate the propagation of an initial pressure distribution in a medium at rest.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.