964 resultados para Two Dimensions
Resumo:
The semiclassical limit of quantum mechanical scattering in two dimensions is developed and the Wentzel-Kramers-Brillouin and eikonal results for two-dimensional scattering is derived. No backward or forward glory scattering is present in two dimensions. Other phenomena, such as rainbows and orbiting, do occur. (C) 2008 American Association of Physics Teachers.
Resumo:
In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore, this transition can be mapped onto a percolation transition. We numerically study the phase diagram in two dimensions (2D) for this model with frustration and without disorder and we compare it to the phase diagram of (i) the model with frustration and disorder and (ii) the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the dynamic critical exponents related to the Potts order parameter and to the energy.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.
Resumo:
Des études récentes suggèrent que le perfectionnisme est un phénomène multidimensionnel avec des composantes néfastes, mais aussi des éléments positifs, au bien-être psychosocial. Une étude a été élaborée afin de comparer la prévalence de ces éléments chez les garçons et les filles surdoués. Quarante-neuf enfants âgés de 7 à 11 ans ont rapporté leurs attitudes perfectionnistes, appartenant à deux dimensions du phénomène : le perfectionnisme orienté ver soi et le perfectionnisme socialement prescrit. Contrairement à nos attentes, les résultats révèlent que la prévalence des deux dimensions de perfectionnisme ne diffère pas de manière significative entre les filles et les garçons surdoués. Une analyse des résultats et de leurs implications pour de futures recherches est offerte.
Resumo:
This is a sequel to our earlier work on the modulated logistic map. Here, we first show that the map comes under the universality class of Feigenbaum. We then give evidence for the fact that our model can generate strange attractors in the unit square for an uncountable number of parameter values in the range μ∞<μ<1. Numerical plots of the attractor for several values of μ are given and the self-similar structure is explicity shown in one case. The fractal and information dimensions of the attractors for many values of μ are shown to be greater than one and the variation in their structure is analysed using the two Lyapunov exponents of the system. Our results suggest that the map can be considered as an analogue of the logistic map in two dimensions and may be useful in describing certain higher dimensional chaotic phenomena.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present a numerical solution for the steady 2D Navier-Stokes equations using a fourth order compact-type method. The geometry of the problem is a constricted symmetric channel, where the boundary can be varied, via a parameter, from a smooth constriction to one possessing a very sharp but smooth corner allowing us to analyse the behaviour of the errors when the solution is smooth or near singular. The set of non-linear equations is solved by the Newton method. Results have been obtained for Reynolds number up to 500. Estimates of the errors incurred have shown that the results are accurate and better than those of the corresponding second order method. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The Cooper pair binding energy vs. center-of-mass-momentum dispersion relation for Bose-Einstein condensation studies of superconductivity is found in two dimensions for a renormalized attractive delta interaction. It crosses over smoothly from a linear to a quadratic form as coupling varies from weak to strong.