131 resultados para Turf
Resumo:
Focusing on the therapeutic and cosmetic potentials of the thermal water, several processes were developed to achieve a raw material known as fango which presents in its constitution water, clay and organic soil. This research work aimed at characterizing turf, sulphur mud and fango from Araxa, MG, Brazil, through physical, physicochemical, inorganic and organic assessments for cosmetic and topical product proposes. The characterization permitted the determination of relevant parameters to suggest the efficacy (presence, of ions) and safety (absence of toxic metals) of those raw materials for cosmetic and pharmaceutical utilization.
Resumo:
This paper introduces the approach of using TURF analysis to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.
Resumo:
The growing substrate of the putting greens is considered a key factor for a healthy turf ecosystem. Actually detailed study on the effects of growth promoting bacteria and biostimulants on a professional sport turf are very limited. This thesis aimed to study the effectiveness of different microorganisms and biostimulants in order to improve the knowledge relative to the relationship between the beneficial microflora and root apparatus of sport turfs. The research project was divided in three principal steps: Initially, commercial products based on biostimulants and microorganisms were tested on a Lolium perenne L. essence grown in a controlled-environment. The principal evaluations were the study of the habitus of plants, biomass production and length of leaves and roots. Were studied the capacity of colonization of microorganisms within root tissues and rhizosphere. In the second step were developed two different biostimulant solutions based on effective microorganisms, mycorrhizae and humic acids. This test was conducted both on an Agrostis stolonifera putting green (Modena Golf & Country Club) in a semi-field condition and within a growth chamber on a Lolium perenne L. essence. Fungicide and chemicals applications were suspended in order to assess the effectiveness of the inoculants for nutrition and control of pests. In the last step, different microorganism mixes and biostimulants were tested on an experimental putting green in the Turf Research Center (TRC) (Virginia Tech, United States) in a real managing situation. The effects of different treatments were studied maintaining all chemicals and mechanicals managements scheduled during a sport season. Both growth-chamber and field results confirmed the capacity of microorganisms based biostimulants to promote the physiologic conditions of the plants, improve the growth of the roots and enhance the aesthetic performance of the turf. Molecular analysis confirmed the capacity of microorganisms to colonize the root tissues.
Resumo:
Nutrient leaching studies are expensive and require expertise in water collection and analyses. Less expensive or easier methods that estimate leaching losses would be desirable. The objective of this study was to determine if anion-exchange membranes (AEMs) and reflectance meters could predict nitrate (NO3-N) leaching losses from a cool-season lawn turf. A two-year field study used an established 90% Kentucky bluegrass (Poa pratensis L.)-10% creeping red fescue (Festuca rubra L.) turf that received 0 to 98 kg N ha-1 month-1, from May through November. Soil monolith lysimeters collected leachate that was analyzed for NO3-N concentration. Soil NO3-N was estimated with AEMs. Spectral reflectance measurements of the turf were obtained with chlorophyll and chroma meters. No significant (p > 0.05) increase in percolate flow-weighted NO3-N concentration (FWC) or mass loss occurred when AEM desorbed soil NO3-N was below 0.84 µg cm-2 d-1. A linear increase in FWC and mass loss (p < 0.0001) occurred, however, when AEM soil NO3-N was above this value. The maximum contaminant level (MCL) for drinking water (10 mg L-1 NO3-N) was reached with an AEM soil NO3-N value of 1.6 µg cm-2 d-1. Maximum meter readings were obtained when AEM soil NO3 N reached or exceeded 2.3 µg cm-2 d-1. As chlorophyll index and hue angle (greenness) increased, there was an increased probability of exceeding the NO3-N MCL. These data suggest that AEMs and reflectance meters can serve as tools to predict NO3-N leaching losses from cool-season lawn turf, and to provide objective guides for N fertilization.
Resumo:
Decomposition rates and N release patterns of turfgrass clippings from lawns are not well understood. Litter bags containing clippings were inserted into the thatch layer of a coolseason turf. The experiment was arranged as a 2 × 4 factorial in a randomized complete block design with three replicates. Treatments included four rates of N fertilizer (0, 98, 196, and 392 kg N ha-1 yr-1) and two clipping treatments (returned vs. removed). Litter bags were removed periodically over the growing season and samples were analyzed for biomass, N and C concentrations, and C:N ratio on an ash-free basis. Percentage N loss from the clippings after 16 weeks ranged from 88% to 93% at the 0 and 392 kg N ha-1 rates, respectively, and from 86% to 94% when clippings were removed (CRM) or returned (CRT), respectively. Percentage C loss from the clippings ranged from 94% to 95% at the 0 and 392 kg N ha-1 rates, respectively, and from 92% to 96% with CRM and CRT, respectively. Cumulative N release was similar across N fertilization rates, (ranging from 131 g N kg-1 to 135 g N kg-1 tissue) but was higher for CRT (151 g N kg-1 tissue) than for CRM (128 g N kg-1 tissue). Grass clippings decomposed rapidly and released N quickly when returned to the turf thatch layer. This indicates the potential for reduced N fertilization when clippings are returned. Such rapid decomposition also suggests that the contribution of grass clippings to thatch development is negligible.
Resumo:
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO3-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO3-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha-1 yr-1. Percolate was collected with zero-tension lysimeters. Flow-weighted NO3-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L-1 for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO3-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO3-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO3-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.
Resumo:
With the introduction of the Treaty of Lisbon came the possibility for Member States to launch an initiative under the Ordinary Legislative Procedure. This came into being as the scope of co-decision was expanded to cover the more sensitive issues of the third pillar (such as judicial cooperation in criminal matters and police cooperation). It was considered necessary that Member States have a shared right of initiative with the European Commission. One case in which the right of initiative was invoked was the Initiative for a European Protection Order (EPO). This dossier is one of the first and few cases in which the Member States’ Initiative after the Treaty of Lisbon was used. It resulted in a turf war between the Presidency and the Commission regarding the scope of the Member States’ Initiatives. This article looks into the Member States’ Initiative as it was introduced after the Treaty of Lisbon and the debate that took place on the EPO.
Resumo:
At head of title: Engineering and design.
Resumo:
Description based on: 1887.
Resumo:
Mode of access: Internet.