991 resultados para Trypanosoma cruzi vector interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction This work aimed to analyze the triatomine infestation scenario in Jaboticatubas after 30 years of the uninterrupted actions of the Program of Chagas Disease Control. Methods From 2007 to 2010, household unit infestation was researched, and an exploratory analysis of the localities infested with Panstrongylus megistus was performed. Results In total, 613 triatomines were captured in 78 households, the majority of which were Panstrongylus megistus and were captured mainly in chicken houses, but they were also found to be colonizing human houses. Conclusions The epidemiological importance of Panstrongylus megistus was confirmed in Jaboticatubas, and capability to colonize indoors has been demonstrated, as has its proximity to humans. Its distribution is aggregated in the northern and in central-eastern regions of the municipality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search of a suitable vector species for xenodiagnosis of humans and animals with chronic Chagas' disease we first investigated the reactions of different vector species to acute infection with Trypanosoma cruzi. Vector species utilized in this study were: Triatoma infestans, Rhodnius prolixus and Triatoma dimidiata, all well adapted to human habitats; Triatoma rubrovaria and Rhodnius neglectus both considered totally wild species; Panstrongylus megistus, Triatoma sordida, Triatoma pseudomaculata and Triatoma brasiliensis, all essentially sylvatic but some with domiciliary tendencies and others restricted to peridomestic biotopes with incipient colonization of human houses after successful eradication of T. infestans. Results summarized in Table IV suggest the following order of infectivity among the 9 studied vector species: P. megistus with 97.8% of infected bugs, T. rubrovaria with 95% of positive bugs a close second followed by T. Pseudomaculata with 94.3% and R. neglectus with 93.8% of infected bugs, almost identical thirds. R. prolixus, T. infestans and T. dimidiata exhibited low infection rates of 53.1%, 51.6% and 38.2% respectively, coupled with sharp decreases occuring with aging of infection (Fig. 1). The situation was intermediate in T. brasiliensis and T. sordida infection rates being 76.9% and 80% respectively. Results also point to the existence of a close correlation between prevalence and intensity of infection in that, species with high infection rates ranging from 93.8% to 97.8% exhibited relatively large proportions of insects (27.3% - 33.5%) harbouring very dense populations of T. cruzi. In species with low infection rates ranging from 38.2% to 53.1% the proportion of bugs demonstrating comparable parasite densities was at most 6%. No differences attributable to blood-meal size or to greater susceptibility of indigenous vector species to parasites of their own geographical area, as suggested in earlier...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study consists of a broad review on what is known and what should be improved regarding knowledge of Chagas disease, not only through analysis on the main studies published on the topics discussed, but to a large extent based on experience of this subject, acquired over the past 50 years (1961-2011). Among the subjects covered, we highlight the pathogenesis and evolution of infection by Trypanosoma cruzi, drugs in use and new strategies for treating Chagas disease; the serological tests for the diagnosis and the controls of cure the infection; the regional variations in prevalence, morbidity and response to treatment of the disease; the importance of metacyclogenesis of T. cruzi in different species of triatomines and its capacity to transmit Chagas infection; the risks of adaptation of wild triatomines to human dwellings; the morbidity and need for a surveillance and control program for Chagas disease in the Amazon region and the need to prioritize initiatives for controlling Chagas disease in Latin America and Mexico and in non-endemic countries, which is today a major international dilemma. Finally, we raise the need for to create a new initiative for controlling Chagas disease in the Gran Chaco, which involves parts of Argentina, Bolivia and Paraguay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies (1982,1987) have emphasized the superiority of sylvatic vector species over domestic species as xenodiagnostic agents in testing hosts with acute or chronic infections by T. cruzi "Y" stock. The present study, which is unique in that it contains data on both infectivity rates produced by the same stock in 11 different vector species and also the reaction of the same vector species to seven different parasite stocks, establishes the general validity of linking efficiency of xenodiagnosis to the biotope of its agent. For example, infectivity rates produced by "São Felipe" stock varied from 82.5% to 98.3% in sylvatic vectors but decreased to 42.5% to 71.3% in domestic species. "Colombiana" stock produced in the same sylvatic vectors infectivity rates ranging from 12.5% to 45%. These shrank to 5%-22.5% in domestic bugs. The functional role of the biotope in the vector-parasite interaction has not been eluddated. But since this phenomenon has been observed to be stable and easy to reproduce, it leads us to believe that the results obtained are valid. Data presented also provide increasing evidence that the infectivity rates exhibited by bugs from xenodiagnosis in chronic hosts, are parasite stock specific. For example, infectivity rates produced by "Berenice", "Y", "FL" and "CL" varied in R. neglectus from 26.3% to 75%; in P. megistus from 56.3% to 83.8%; in T. sordida from 28.8% to 58.8% in T. pseudomaculata from 41.3% to 66.3% and in T. rubrovaria from 48.8% to 85%. Data from xenodiagnosis in the same hosts, carrying acute infections by the same parasite stocks, gave the five sylvatic vectors a positive rating of approximately 100%, thus suggesting that the heavy loads of parasites circulating in the acute hosts obscured the characteristic interspecific differences for the parasite stock. Nonetheless these latter were revealed in the same hosts with chronic infections stimulated by very low numbers of the same parasite stocks. Certain observations here described lead us to speculate as to the possibility of further results from other parasite stocks, allowing the association of the infectivity rates produced in bugs by different parasite stocks with the isoenzymic patterns revealed by these stocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metacyclic trypomastigotes ol the CL strain of Trypanosoma cruzi obtained from triatomid vectors and from axenic cultures were comparatively analysed as to their antigen make-up and immunogenic characteristics. They were found to be similar by the various parameters examined. Thus, sera of mice immunized with either one of the two metacyclic types precipitated a 82Kd surface protein from 131I-labeled culture metacyclics. Sera of mice protected against acute T. cruzi infection by immunization with killed culture metacyclics of a different strain (G) recognized, by immunoblotting, a 77Kd protein in both types of CL strain metacyclics. A monoclonal antibody raised against G strain metacyclics, and specific for metacyclic stages of this strain, reacted with both CL strain metacyclic types. Both metacyclic forms were similarly Iysed by various anti-T. cruzi sera, in a complement-mediated reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eco-epidemiology of T. cruzi infection was investigated in the Eastern border of the Panama Canal in Central Panama. Between 1999 and 2000, 1110 triatomines were collected: 1050 triatomines (94.6%) from palm trees, 27 (2.4%) from periurban habitats and 33 (3.0%) inside houses. All specimens were identified as R. pallescens. There was no evidence of vector domiciliation. Salivary glands from 380 R. pallescens revealed a trypanosome natural infection rate of 7.6%, while rectal ampoule content from 373 triatomines was 45%. Isoenzyme profiles on isolated trypanosomes demonstrated that 85.4% (n = 88) were T. cruzi and 14.6% (n = 15) were T. rangeli. Blood meal analysis from 829 R. pallescens demonstrated a zoophilic vector behavior, with opossums as the preferential blood source. Seroprevalence in human samples from both study sites was less than 2%. Our results demonstrate that T. cruzi survives in the area in balanced association with R. pallescens, and with several different species of mammals in their natural niches. However, the area is an imminent risk of infection for its population, consequently it is important to implement a community educational program regarding disease knowledge and control measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparision by scanning electron microscopy (SEM) of Trypanosoma cruzi flagellates attached to the cuticle of the rectal gland of infected Dipetalogaster maxima nymphs, showed marked differences before amd after feeding. Before feeding numerous metacyclic trypomastigotes were observed among the abundant epimastigotes that formed the carpet of flagellates. On the other hand, in insects that were allowed to urinate for 24 hours after a meal, the metacyclics were scarce,indicating that they had been detached by the urine flow. An asymetric type of cell division, probably originating both an epi-and a trypomastigote, was occasionally observed. The occurrence of swellings at different levels of the flagella of epimastigotes suggests that secondary sites of attachment may be common.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After Triatoma infestans death, Trypanosoma cruzi survived several days, maintaining the ability to infect a vertebrate host. Dead bugs from an endemic area collected during an official spraying comapign showed mobile rectal tripanosomes up to 14 days after vector death. Two days after vector death2, 760 tripomastigotes were found alive in its rectal material. However, the number of mobile tripomastigotes decreased significantly from the 5th day after death. Laboratory proofs with third and fifth nymphal stage showed similar results. Living tripanosomes were found in their rectal material at 10 days in third stage and even at 30 days in fifth nymphal stage. The mean number of tripomastigotes had no changes up to 10 days in third nymphal stage and increased significantly from 1 to 10 days in the fifth stage. Conjuctival instillation as well as intraperitoneal innoculation to mice, of metacyclic forms from dead T. infestans produced infection in the vertebrate host. Present results show that human contact with dead vector highly probable in summer and living and infective T. cruzi are available for transmision in the vector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vector species has not hitherto been studied as influencing metacyclogenesis of Trypanosoma cruzi, while the role of the parasite strain has been frequently stressed as of dominant importance in this process. In order to fill this gap in our knowledge, metacyclogenesis was monitored in nine triatomine species. The first part of this paper presents photographs of the main and intermediate parasite stages in each vector species studied. In the second part of the study the proportional distribution of all these forms, as seen in Giemsa stained smears is summarized, thus providing an opportunity to analyze both: the length of time between the ingestion of the blood trypomastigotes and the appearance of metacyclic forms and the rates of developmental stages leading to these latter. The most remarkable observation was that metacyclogenesis rates in vivo appear to be vector dependent, reaching 50 in Rhodnius neglectus, 37 in its congener R. prolixus and being dramatically lower in the majority of Triatoma species (5 in T. sordida, 3 in T. brasiliensis and 0 in T. pseudomaculata) at the 120th day of infection. These observations suggest that through screening of different vector species it is possible to find some that are capable of minimizing or maximizing metacyclic production.