1000 resultados para Trypanocidal activity
Resumo:
In the scope of our ongoing research on bioactive agents from Brazilian flora, twenty-four extracts and fractions obtained from Piper arboreum Aub. and Piper tuberculatum Jacq. (Piperaceae) were screened for trypanocidal activity by using MTT colorimetric assay. The strongest activity was found in hexane fractions from the leaves of P. arboreum (IC50= 13.3 µg/ mL) and P. tuberculatum (IC50 = 17.2 µg/mL). Hexane fractions of the fruits of P. tuberculatum and P. arboreum showed potent toxic effects on epimastigote forms of Trypanosoma cruzi, with values of IC50 (µg/mL) of 32.2 and 31.3, respectively. Additionally, the phytochemical study of the hexane fraction of P. arboreum leaves furnished two pyrrolidine amides, piperyline (1) and 4,5-dihydropiperyline (2), which could be responsible, at least in part for the observed antiprotozoal activity.
Resumo:
Five structurally related pimarane diterpenes isolated from the roots of Viguiera arenaria and a further compound obtained by chemical derivatization were evaluated in vitro against the trypomastigote forms of Trypanosoma cruzi. The natural compound ent-15-pimarene-8 beta,19-diol and the derivative ent-8(14),15-pimaradiene-3 beta-acetoxy showed the highest trypanocidal activity, displaying IC50 values of 116.5 +/- 1.21 and 149.3 +/- 1.07 mu M, respectively, while the positive control, violet gentian, showed an IC50 of 76 mu M. Based on the results, it can be concluded that minor structural differences among the tested diterpenes influence significantly the trypanocidal activity, thus bringing new perspectives to the establishment of structure-activity relationships among this type of metabolites to the treatment of Chagas` disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Chagas` disease is an illness that affects millions of people in Central and South America, The search for both a prophylactic drug to be added to human blood as well as a safe and reliable therapeutic drug are greatly needed to control such disease. Herein, we report the trypanocidal activity of 15 crude extracts and 14 Compounds (limonoids and triterpenes) as well as the isolation of 25 known compounds (6 limonoids, 12 triterpenes, 1 sesquiterpene, 5 steroids, and 1 flavonoid) from Cedrela fissilis. The present study shows that this plant is a Promising Source of active compounds for the control of Chagas` disease. The inhibitory activity found for odoratol indicates that it is potentially useful as an alternative for the chemoprophylactic gentian violet.
Resumo:
We report the trypanocidal activity of quinonemethide triterpenoids isolated from root extracts of Cheiloclinium cognatum, a plant of the Hippocrateaceae family, collected in the Cerrado Reserve at Universidade Federal de Goias, Brazil. The trypanocidal activity assays showed an effect on the blood trypomastigote forms of the Y strain of Trypanosoma cruzi where tingenone and tingenol demonstrated activity on the parasite. Their structures were elucidated on the basis of spectral data, particularly COSY, HMQC and HMBC experiments, and chemical transformations.
Resumo:
The present study evaluates the in vitro and in vivo trypanocidal activity of ursolic acid and oleanolic acid against the Bolivia strain of Trypanosoma cruzi. Their acute toxicity is also assessed on the basis of median lethal dose (DL50) determination and quantification of biochemical parameters. Ursolic acid is the most active compound in vitro, furnishing IC50 of 25.5 mu M and displaying 77% of trypomastigote lysis at a concentration of 128 A mu M. In agreement with in vitro assays, the results obtained for the in vivo assay reveals that ursolic acid (at a dose of 20 mg/Kg/day) provides the most significant reduction in the number of parasites at the parasitemic peak. Results concerning the LD50 assay and the biochemical parameters evaluated in the present study demonstrate that these substances can be safely used on an experimental basis.
Resumo:
In this study we report the screening of the in vitro trypanocidal activity of 20 extracts obtained from 10 different plant species growing in the Brazilian Cerrado: Aspidosperma macrocarpum Mart. (Apocynaceae), Aegiphila sellowiano Cham. (Verbenaceae), Byrsonima intermedia Juss. (Malpighiaceae), Cyperus rotundus L. (Cyperaceae), Leandra lacunosa Cogn. (Melastomataceae), Miconia ligustroides (DC.) Naudin. (Melastomataceae), Miconia sellowiana Naudin.(Melastomataceae),Myrcia variabilis Mart.ex DC. (Myrtaceae), Solanum lycocarpum St. Hil. (Solanaceae), and Tibouchina stenocarpa Cogn. (Melastomataceae). The most active extracts were submitted to phytochemical analyses. High-resolution gas chromatography analysis of the n-hexane extract of T. stenocarpa (IC(50) = 23.6 mu g/mL), the most active extract amongst all the tested samples, allowed the identification of beta-amyrin, alpha-amyrin, lupeol, friedelin, beta-friedelanol, campesterol, stigmasterol, and beta-sitosterol. Oleanolic and ursolic acids were isolated from the methylene chloride extract of T stenocarpa (IC(50) = 51.5 mu g/mL), while ursolic acid was isolated from the methylene chloride extract of M. variabilis (IC(50)=38.4 mu g/mL). Solasonine and solamargine were identified as major compounds by mass spectrometry analysis in the hydroalcoholic extract of the fruits of S. lycocarpum (IC(50)=57.1 mu g/mL).The results showed that the trypanocidal activity may be related to the major compounds identified in the crude active extracts.
Resumo:
The in vitro trypanocidal activity of 22 extracts and 43 fractions of plants belonging to the families Meliaceae and Rutaceae was evaluated. The extracts from leaves of Conchocarphus heterophyllus and branches of Trichilia ramalhoi were the most active. The trypanocidal activity seems to be increased by fractionation of the extracts. Fractions from C. heterophyllus and Galipea carinata were the most active and a 100% lysis of the parasites was observed for five fractions. From one of them were isolated two flavonoids: flavone and 7-methoxyflavone, which showed weak trypanocidal activity. The results obtained from the extracts and fractions revealed that the order Rutales is a promising source for the search of new drugs for Chagas disease. Phytochemical studies with the other active fractions are underway in order to isolate compounds, which could be associated with observed activities.
Resumo:
The side effects and the emerging resistance to the available drugs against leishmaniasis and trypanosomiasis led to the urgent need for new therapeutic agents against these diseases. Thirty one extracts of thirteen medicinal plants from the Brazilian Cerrado were therefore evaluated in vitro for their antiprotozoal activity against promastigotes of Leishmania donovani, and amastigotes of Trypanosoma cruzi. Among the selected plants, Casearia sylvestris var. lingua was the most active against both L. donovani and T. cruzi. Fifteen extracts were active against promastigotes of L. donovani with concentrations inhibiting 50% of parasite growth (IC50) between 0.1-10 µg/ml, particularly those of Annona crassiflora (Annonaceae), Himatanthus obovatus (Apocynaceae), Guarea kunthiana (Meliaceae), Cupania vernalis (Sapindaceae), and Serjania lethalis (Sapindaceae). With regard to amastigotes of T. cruzi, extracts of A. crassiflora, Duguetia furfuracea (Annonaceae), and C. sylvestris var. lingua were active with IC50 values between 0.3-10 µg/ml. Bioassay fractionations of the more active extracts are under progress to identify the active antiparasite compounds.
Resumo:
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigote blood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 µg/mL, respectively. Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2, and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values of atomic charge, orbital population, and vibrational frequencies showed that the C-4-C-5 pi-endocyclic bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-ring (C-1 and C-9) and pi-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote the trypanocidal activity of these compounds.
Resumo:
Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.
Resumo:
The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.
Resumo:
Gaudichaudianic acid, a prenylated chromene isolated from Piper gaudichaudianum, has been described as a potent trypanocidal compound against the Y-strain of Trypanosoma cruzi. We herein describe its isolation as a racemic mixture followed by enantiomeric resolution using chiral HPLC and determination of the absolute configuration of the enantiomers as (+)-S and (-)-R by means of a combination of electronic and vibrational circular dichroism using density functional theory calculations. Investigation of the EtOAc extract of the roots, stems, and leaves from both adult specimens and seedlings of P. gaudichaudianum revealed that gaudichaudianic acid is biosynthesized as a racemic mixture from the seedling stage onward. Moreover, gaudichaudianic acid was found exclusively in the roots of seedlings, while it is present in all organs of the adult plant. Trypanocidal assays indicated that the (+)-enantiomer was more active than its antipode. Interestingly, mixtures of enantiomers stowed a synergistic effect, with the racemic mixture being the most active.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.