823 resultados para Trusted computing


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impact their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on giving the user a hardware token that generates one-time-passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this paper, we propose a scalable OTP solution using mobile phones and based on trusted computing technology that combines enhanced usability with strong security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research introduces a general methodology in order to create a Coloured Petri Net (CPN) model of a security protocol. Then standard or user-defined security properties of the created CPN model are identified. After adding an attacker model to the protocol model, the security property is verified using state space method. This approach is applied to analyse a number of trusted computing protocols. The results show the applicability of proposed method to analyse both standard and user-defined properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Open and Trusted Health Information Systems (OTHIS) Research Group has formed in response to the health sector’s privacy and security requirements for contemporary Health Information Systems (HIS). Due to recent research developments in trusted computing concepts, it is now both timely and desirable to move electronic HIS towards privacy-aware and security-aware applications. We introduce the OTHIS architecture in this paper. This scheme proposes a feasible and sustainable solution to meeting real-world application security demands using commercial off-the-shelf systems and commodity hardware and software products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital rights management allows information owners to control the use and dissemination of electronic documents via a machine-readable licence. Documents are distributed in a protected form such that they may only be used with trusted environments, and only in accordance with terms and conditions stated in the licence. Digital rights management has found uses in protecting copyrighted audio-visual productions, private personal information, and companies' trade secrets and intellectual property. This chapter describes a general model of digital rights management together with the technologies used to implement each component of a digital rights management system, and desribes how digital rights management can be applied to secure the distribution of electronic information in a variety of contexts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyzing security protocols is an ongoing research in the last years. Different types of tools are developed to make the analysis process more precise, fast and easy. These tools consider security protocols as black boxes that can not easily be composed. It is difficult or impossible to do a low-level analysis or combine different tools with each other using these tools. This research uses Coloured Petri Nets (CPN) to analyze OSAP trusted computing protocol. The OSAP protocol is modeled in different levels and it is analyzed using state space method. The produced model can be combined with other trusted computing protocols in future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Usability in HCI (Human-Computer Interaction) is normally understood as the simplicity and clarity with which the interaction with a computer program or a web site is designed. Identity management systems need to provide adequate usability and should have a simple and intuitive interface. The system should not only be designed to satisfy service provider requirements but it has to consider user requirements, otherwise it will lead to inconvenience and poor usability for users when managing their identities. With poor usability and a poor user interface with regard to security, it is highly likely that the system will have poor security. The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impacts their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on generating one-time passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this thesis, the security and usability aspects of contemporary methods for authentication based on one-time passwords (OTP) are examined and analyzed. In addition, more scalable solutions that provide a good user experience while at the same time preserving strong security are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern applications comprise multiple components, such as browser plug-ins, often of unknown provenance and quality. Statistics show that failure of such components accounts for a high percentage of software faults. Enabling isolation of such fine-grained components is therefore necessary to increase the robustness and resilience of security-critical and safety-critical computer systems. In this paper, we evaluate whether such fine-grained components can be sandboxed through the use of the hardware virtualization support available in modern Intel and AMD processors. We compare the performance and functionality of such an approach to two previous software based approaches. The results demonstrate that hardware isolation minimizes the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution's correctness. We also show that our relatively simple implementation has equivalent run-time performance, with overheads of less than 34%, does not require custom tool chains and provides enhanced functionality over software-only approaches, confirming that hardware virtualization technology is a viable mechanism for fine-grained component isolation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of Trusted Platform Module (TPM) is be- coming increasingly popular in many security sys- tems. To access objects protected by TPM (such as cryptographic keys), several cryptographic proto- cols, such as the Object Specific Authorization Pro- tocol (OSAP), can be used. Given the sensitivity and the importance of those objects protected by TPM, the security of this protocol is vital. Formal meth- ods allow a precise and complete analysis of crypto- graphic protocols such that their security properties can be asserted with high assurance. Unfortunately, formal verification of these protocols are limited, de- spite the abundance of formal tools that one can use. In this paper, we demonstrate the use of Coloured Petri Nets (CPN) - a type of formal technique, to formally model the OSAP. Using this model, we then verify the authentication property of this protocol us- ing the state space analysis technique. The results of analysis demonstrates that as reported by Chen and Ryan the authentication property of OSAP can be violated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many software applications extend their functionality by dynamically loading executable components into their allocated address space. Such components, exemplified by browser plugins and other software add-ons, not only enable reusability, but also promote programming simplicity, as they reside in the same address space as their host application, supporting easy sharing of complex data structures and pointers. However, such components are also often of unknown provenance and quality and may be riddled with accidental bugs or, in some cases, deliberately malicious code. Statistics show that such component failures account for a high percentage of software crashes and vulnerabilities. Enabling isolation of such fine-grained components is therefore necessary to increase the stability, security and resilience of computer programs. This thesis addresses this issue by showing how host applications can create isolation domains for individual components, while preserving the benefits of a single address space, via a new architecture for software isolation called LibVM. Towards this end, we define a specification which outlines the functional requirements for LibVM, identify the conditions under which these functional requirements can be met, define an abstract Application Programming Interface (API) that encompasses the general problem of isolating shared libraries, thus separating policy from mechanism, and prove its practicality with two concrete implementations based on hardware virtualization and system call interpositioning, respectively. The results demonstrate that hardware isolation minimises the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution’s correctness. This thesis concludes that, not only is it feasible to create such isolation domains for individual components, but that it should also be a fundamental operating system supported abstraction, which would lead to more stable and secure applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To prevent unauthorized access to protected trusted platform module (TPM) objects, authorization protocols, such as the object-specific authorization protocol (OSAP), have been introduced by the trusted computing group (TCG). By using OSAP, processes trying to gain access to the protected TPM objects need to prove their knowledge of relevant authorization data before access to the objects can be granted. Chen and Ryan’s 2009 analysis has demonstrated OSAP’s authentication vulnerability in sessions with shared authorization data. They also proposed the Session Key Authorization Protocol (SKAP) with fewer stages as an alternative to OSAP. Chen and Ryan’s analysis of SKAP using ProVerif proves the authentication property. The purpose of this paper was to examine the usefulness of Colored Petri Nets (CPN) and CPN Tools for security analysis. Using OSAP and SKAP as case studies, we construct intruder and authentication property models in CPN. CPN Tools is used to verify the authentication property using a Dolev–Yao-based model. Verification of the authentication property in both models using the state space tool produces results consistent with those of Chen and Ryan.