976 resultados para True Time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of in-fibre Bragg gratings, and the application of arrays of such gratings as strain sensors and as true time delay elements for the control of phased array antennas is reported. Chirped period Bragg gratings were produced using the fibre deformation fabrication technique, with chirps of between 2.9nm and 17.3nm achieved. Arrays of 5mm and 2mm long uniform period Bragg gratings were fabricated using the inscription method, for use as true time delay elements,dissimilar wavefronts and their spectral characteristics recorded. The uniform period grating arrays were used to create minimum time delays of 9.09ps, 19.02ps and 31ps; making them suitable for controlling phased array antennas operating at RF frequencies of up to 3GHz, with 10° phase resolution. Four 4mm long chirped gratings were produced using the dissimilar wavefronts fabrication method, having chirps of 7nm, 12nm, 20nm and 30nm, and were used to create time delays of between 0.3ps and 59ps. Hence they are suitable for controlling phased array antennas at RF frequencies of up to 48GHz. The application of in fibre Bragg gratings as strain sensors within smart structure materials was investigated, with their sensitivity to applied strain and compression measured for both embedded and surface mounted uniform period and fibre Fabry-Perot filter gratings. A fibre Bragg grating sensor demultiplexing scheme based on a liquid crystal filled Fabry-Perot etalon tuneable transmission filter was proposed, successfully constructed and fully characterised. Three characteristics of the LCFP etalon were found to pose operational limitations to its application in a Bragg grating sensor system; most significantly, the resonance peak wavelength was highly (-2,77nm/°C) temperature dependent. Several methods for minimising this temperature sensitivity were investigated, but enjoyed only limited success. It was therefore concluded that this type (E7 filled) of LCFP etalon is unsuitable for use as a Bragg grating sensor demultiplexing element.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The authors have demonstrated an optical fibre grating based delay line which produces time delays in increments as small as 31 ps. The device could provide a true time delay component for a phased array antenna

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High density development has been seen as a contribution to sustainable development. However, a number of engineering issues play a crucial role in the sustainable construction of high rise buildings. Non linear deformation of concrete has an adverse impact on high-rise buildings with complex geometries, due to differential axial shortening. These adverse effects are caused by time dependent behaviour resulting in volume change known as ‘shrinkage’, ‘creep’ and ‘elastic’ deformation. These three phenomena govern the behaviour and performance of all concrete elements, during and after construction. Reinforcement content, variable concrete modulus, volume to surface area ratio of the elements, environmental conditions, and construction quality and sequence influence on the performance of concrete elements and differential axial shortening will occur in all structural systems. Its detrimental effects escalate with increasing height and non vertical load paths resulting from geometric complexity. The magnitude of these effects has a significant impact on building envelopes, building services, secondary systems, and lifetime serviceability and performance. Analytical and test procedures available to quantify the magnitude of these effects are limited to a very few parameters and are not adequately rigorous to capture the complexity of true time dependent material response. With this in mind, a research project has been undertaken to develop an accurate numerical procedure to quantify the differential axial shortening of structural elements. The procedure has been successfully applied to quantify the differential axial shortening of a high rise building, and the important capabilities available in the procedure have been discussed. A new practical concept, based on the variation of vibration characteristic of structure during and after construction and used to quantify the axial shortening and assess the performance of structure, is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho avalia o desempenho de um controlador fuzzy (tipo Takagi-Sugeno-Kang) quando, utilizando tecnologia sem fio para conectar as entradas e a saída do controlador aos sensores/atuadores, sofre perda das informações destes canais, resultado de perdas de pacotes. Tipicamente são utilizados controladores PID nas malhas de controle. Assim, o estudo realizado compara os resultados obtidos com os controladores fuzzy com os resultados dos controladores PID. Além disso, o trabalho visa estudar o comportamento deste controlador implementado em uma arquitetura microprocessada utilizando números inteiros nos cálculos, interpolação com segmentos de reta para as funções de pertinência da entrada e singletons nas funções de pertinência da saída. Para esse estudo foi utilizado, num ambiente Matlab/Simulink, um controlador fuzzy e o aplicativo True Time para simular o ambiente sem fio. Desenvolvido pelo Departamento de Controle Automático da Universidade de Lund, o True Time é baseado no Matlab/Simulink e fornece todas as ferramentas necessárias para a criação de um ambiente de rede (com e sem fio) virtual. Dado o paradigma de que quanto maior for a utilização do canal, maior a degradação do mesmo, é avaliado o comportamento do sistema de controle e uma proposta para diminuir o impacto da perda de pacotes no controle do sistema, bem como o impacto da variação das características internas da planta e da arquitetura utilizada na rede. Inicialmente são realizados ensaios utilizando-se o controlador fuzzy virtual (Simulink) e, posteriormente, o controlador implementado com dsPIC. Ao final, é apresentado um resumo desses ensaios e a comprovação dos bons resultados obtidos com um controlador fuzzy numa malha de controle utilizando uma rede na entrada e na saída do controlador.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a Rotman lens, which forms fixed beams at 0°, ±15° and ±30°, is augmented using liquid crystal phase shifters to simultaneously steer each beam by up to ±7.5°. Measured results are used to demonstrate that the true time delay property of the antenna and voltage controlled phase shifters can be exploited to provide continuously scanned beams with full coverage over an angular range of ±37.5°, and with operation over the band 6-10 GHz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio y desarrollo de algoritmos de guerra electrónica {electronic warfare, EW) y radar para su implementación en sistemas de tiempo real. La llegada de los sistemas de radio, radar y navegación al terreno militar llevó al desarrollo de tecnologías para combatirlos. Así, el objetivo de los sistemas de guerra electrónica es el control del espectro electomagnético. Una de la funciones de la guerra electrónica es la inteligencia de señales {signals intelligence, SIGINT), cuya labor es detectar, almacenar, analizar, clasificar y localizar la procedencia de todo tipo de señales presentes en el espectro. El subsistema de inteligencia de señales dedicado a las señales radar es la inteligencia electrónica {electronic intelligence, ELINT). Un sistema de tiempo real es aquel cuyo factor de mérito depende tanto del resultado proporcionado como del tiempo en que se da dicho resultado. Los sistemas radar y de guerra electrónica tienen que proporcionar información lo más rápido posible y de forma continua, por lo que pueden encuadrarse dentro de los sistemas de tiempo real. La introducción de restricciones de tiempo real implica un proceso de realimentación entre el diseño del algoritmo y su implementación en plataformas “hardware”. Las restricciones de tiempo real son dos: latencia y área de la implementación. En esta tesis, todos los algoritmos presentados se han implementado en plataformas del tipo field programmable gate array (FPGA), ya que presentan un buen compromiso entre velocidad, coste total, consumo y reconfigurabilidad. La primera parte de la tesis está centrada en el estudio de diferentes subsistemas de un equipo ELINT: detección de señales mediante un detector canalizado, extracción de los parámetros de pulsos radar, clasificación de modulaciones y localization pasiva. La transformada discreta de Fourier {discrete Fourier transform, DFT) es un detector y estimador de frecuencia quasi-óptimo para señales de banda estrecha en presencia de ruido blanco. El desarrollo de algoritmos eficientes para el cálculo de la DFT, conocidos como fast Fourier transform (FFT), han situado a la FFT como el algoritmo más utilizado para la detección de señales de banda estrecha con requisitos de tiempo real. Así, se ha diseñado e implementado un algoritmo de detección y análisis espectral para su implementación en tiempo real. Los parámetros más característicos de un pulso radar son su tiempo de llegada y anchura de pulso. Se ha diseñado e implementado un algoritmo capaz de extraer dichos parámetros. Este algoritmo se puede utilizar con varios propósitos: realizar un reconocimiento genérico del radar que transmite dicha señal, localizar la posición de dicho radar o bien puede utilizarse como la parte de preprocesado de un clasificador automático de modulaciones. La clasificación automática de modulaciones es extremadamente complicada en entornos no cooperativos. Un clasificador automático de modulaciones se divide en dos partes: preprocesado y el algoritmo de clasificación. Los algoritmos de clasificación basados en parámetros representativos calculan diferentes estadísticos de la señal de entrada y la clasifican procesando dichos estadísticos. Los algoritmos de localization pueden dividirse en dos tipos: triangulación y sistemas cuadráticos. En los algoritmos basados en triangulación, la posición se estima mediante la intersección de las rectas proporcionadas por la dirección de llegada de la señal. En cambio, en los sistemas cuadráticos, la posición se estima mediante la intersección de superficies con igual diferencia en el tiempo de llegada (time difference of arrival, TDOA) o diferencia en la frecuencia de llegada (frequency difference of arrival, FDOA). Aunque sólo se ha implementado la estimación del TDOA y FDOA mediante la diferencia de tiempos de llegada y diferencia de frecuencias, se presentan estudios exhaustivos sobre los diferentes algoritmos para la estimación del TDOA, FDOA y localización pasiva mediante TDOA-FDOA. La segunda parte de la tesis está dedicada al diseño e implementación filtros discretos de respuesta finita (finite impulse response, FIR) para dos aplicaciones radar: phased array de banda ancha mediante filtros retardadores (true-time delay, TTD) y la mejora del alcance de un radar sin modificar el “hardware” existente para que la solución sea de bajo coste. La operación de un phased array de banda ancha mediante desfasadores no es factible ya que el retardo temporal no puede aproximarse mediante un desfase. La solución adoptada e implementada consiste en sustituir los desfasadores por filtros digitales con retardo programable. El máximo alcance de un radar depende de la relación señal a ruido promedio en el receptor. La relación señal a ruido depende a su vez de la energía de señal transmitida, potencia multiplicado por la anchura de pulso. Cualquier cambio hardware que se realice conlleva un alto coste. La solución que se propone es utilizar una técnica de compresión de pulsos, consistente en introducir una modulación interna a la señal, desacoplando alcance y resolución. ABSTRACT This thesis is focused on the study and development of electronic warfare (EW) and radar algorithms for real-time implementation. The arrival of radar, radio and navigation systems to the military sphere led to the development of technologies to fight them. Therefore, the objective of EW systems is the control of the electromagnetic spectrum. Signals Intelligence (SIGINT) is one of the EW functions, whose mission is to detect, collect, analyze, classify and locate all kind of electromagnetic emissions. Electronic intelligence (ELINT) is the SIGINT subsystem that is devoted to radar signals. A real-time system is the one whose correctness depends not only on the provided result but also on the time in which this result is obtained. Radar and EW systems must provide information as fast as possible on a continuous basis and they can be defined as real-time systems. The introduction of real-time constraints implies a feedback process between the design of the algorithms and their hardware implementation. Moreover, a real-time constraint consists of two parameters: Latency and area of the implementation. All the algorithms in this thesis have been implemented on field programmable gate array (FPGAs) platforms, presenting a trade-off among performance, cost, power consumption and reconfigurability. The first part of the thesis is related to the study of different key subsystems of an ELINT equipment: Signal detection with channelized receivers, pulse parameter extraction, modulation classification for radar signals and passive location algorithms. The discrete Fourier transform (DFT) is a nearly optimal detector and frequency estimator for narrow-band signals buried in white noise. The introduction of fast algorithms to calculate the DFT, known as FFT, reduces the complexity and the processing time of the DFT computation. These properties have placed the FFT as one the most conventional methods for narrow-band signal detection for real-time applications. An algorithm for real-time spectral analysis for user-defined bandwidth, instantaneous dynamic range and resolution is presented. The most characteristic parameters of a pulsed signal are its time of arrival (TOA) and the pulse width (PW). The estimation of these basic parameters is a fundamental task in an ELINT equipment. A basic pulse parameter extractor (PPE) that is able to estimate all these parameters is designed and implemented. The PPE may be useful to perform a generic radar recognition process, perform an emitter location technique and can be used as the preprocessing part of an automatic modulation classifier (AMC). Modulation classification is a difficult task in a non-cooperative environment. An AMC consists of two parts: Signal preprocessing and the classification algorithm itself. Featurebased algorithms obtain different characteristics or features of the input signals. Once these features are extracted, the classification is carried out by processing these features. A feature based-AMC for pulsed radar signals with real-time requirements is studied, designed and implemented. Emitter passive location techniques can be divided into two classes: Triangulation systems, in which the emitter location is estimated with the intersection of the different lines of bearing created from the estimated directions of arrival, and quadratic position-fixing systems, in which the position is estimated through the intersection of iso-time difference of arrival (TDOA) or iso-frequency difference of arrival (FDOA) quadratic surfaces. Although TDOA and FDOA are only implemented with time of arrival and frequency differences, different algorithms for TDOA, FDOA and position estimation are studied and analyzed. The second part is dedicated to FIR filter design and implementation for two different radar applications: Wideband phased arrays with true-time delay (TTD) filters and the range improvement of an operative radar with no hardware changes to minimize costs. Wideband operation of phased arrays is unfeasible because time delays cannot be approximated by phase shifts. The presented solution is based on the substitution of the phase shifters by FIR discrete delay filters. The maximum range of a radar depends on the averaged signal to noise ratio (SNR) at the receiver. Among other factors, the SNR depends on the transmitted signal energy that is power times pulse width. Any possible hardware change implies high costs. The proposed solution lies in the use of a signal processing technique known as pulse compression, which consists of introducing an internal modulation within the pulse width, decoupling range and resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study it is shown that the nontrivial hyperbolic fixed point of a nonlinear dynamical system, which is formulated by means of the adaptive expectations, corresponds to the unstable equilibrium of Harrod. We prove that this nonlinear dynamical (in the sense of Harrod) model is structurally stable under suitable economic conditions. In the case of structural stability, small changes of the functions (C1-perturbations of the vector field) describing the expected and the true time variation of the capital coefficients do not influence the qualitative properties of the endogenous variables, that is, although the trajectories may slightly change, their structure is the same as that of the unperturbed one, and therefore these models are suitable for long-time predictions. In this situation the critique of Lucas or Engel is not valid. There is no topological conjugacy between the perturbed and unperturbed models; the change of the growth rate between two levels may require different times for the perturbed and unperturbed models.