1000 resultados para Tropospheric Ozone
Resumo:
Tropospheric ozone is an air pollutant thought to reduce crop yields across Europe. Much experimental scientific work has been completed or is currently underway to quantify yield effects at ambient ozone levels. In this research, we seek to directly evaluate whether such effects are observed at the farm level. This is done by intersecting a farm level panel dataset for winter wheat farms in England & Wales with information on ambient ozone, and estimating a production function with ozone as a fixed input. Panel data methods, Generalised Method of Moments (GMM) techniques and nested exogeneity tests are employed in the estimation. The results confirm a small, but nevertheless statistically significant negative effect of ambient ozone levels on wheat yields.
Resumo:
We investigate ozone changes from preindustrial times to the present using a chemistry-climate model. The influence of changes in physical climate, ozone-depleting substances, N2O, and tropospheric ozone precursors is estimated using equilibrium simulations with these different factors set at either preindustrial or present-day values. When these effects are combined, the entire decrease in total column ozone from preindustrial to present day is very small (–1.8 DU) in the global annual average, though with significant decreases in total column ozone over large parts of the Southern Hemisphere during austral spring and widespread increases in column ozone over the Northern Hemisphere during boreal summer. A significant contribution to the total ozone column change is the increase in lower stratospheric ozone associated with the increase in ozone precursors (5.9 DU). Also noteworthy is the near cancellation of the global average climate change effect on ozone (3.5 DU) by the increase in N2O (–3.9 DU).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate how declines in US emissions of CO and O3 precursors have impacted the lower free troposphere over the North Atlantic. We use seasonal observations for O3 and CO from the PICO-NARE project for the period covering 2001 to 2010. Observations are used to verify model output generated by the GEOS-Chem 3-D global chemical transport model. Additional satellite data for CO from AIRS/Aqua and for O3 from TES/Aura were also used to provide additional comparisons; particularly for fall, winter, and spring when PICO-NARE coverage is sparse. We find GEOS-Chem captures the seasonal cycle for CO and O3 well compared to PICO-NARE data. For CO, GEOS-Chem is biased low, particularly in spring which is in agreement with findings from previous studies. GEOS-Chem is 24.7 +/- 5.2 ppbv (1-σ) low compared to PICO-NARE summer CO data while AIRS is 14.2 +/- 6.6 ppbv high. AIRS does not show nearly as much variation as seen with GEOS-Chem or the Pico data, and goes from being lower than PICO-NARE data in winter and spring, to higher in summer and fall. Both TES and GEOS-Chem match the seasonal ozone cycle well for all seasons when compared with observations. Model results for O3 show GEOS-Chem is 6.67 +/- 2.63 ppbv high compared to PICO-NARE summer measurements and TES was 3.91 +/- 4.2 ppbv higher. Pico data, model results, and AIRS all show declines in CO and O3 for the summer period from 2001 to 2010. Limited availability of TES data prevents us from using it in trend analysis. For summer CO Pico, GEOS-Chem, and AIRS results show declines of 1.32, 0.368, and 0.548 ppbv/year respectively. For summer O3, Pico and GEOS-Chem show declines of -0.726 and -0.583 ppbv/year respectively. In other seasons, both model and AIRS show declining CO, particularly in the fall. GEOS-Chem results show a fall decline of 0.798 ppbv/year and AIRS shows a decline of 0.8372 ppbv/year. Winter and spring CO declines are 0.393 and 0.307 for GEOS-Chem, and 0.455 and 0.566 for AIRS. GEOS-Chem shows declining O3 in other seasons as well; with fall being the season of greatest decrease and winter being the least. Model results for fall, winter, and spring are 0.856, 0.117, and 0.570 ppbv/year respectively. Given the availability of data we are most confident in summer results and thus find that summer CO and O3 have declined in lower free troposphere of the North Atlantic region of the Azores. Sensitivity studies for CO and O3 at Pico were conducted by turning off North American fossil fuel emissions in GEOS-Chem. Model results show that North America fossil fuel emissions contribute 8.57 ppbv CO and 4.03 ppbv O3 to Pico. The magnitude of modeled trends declines in all seasons without North American fossil fuel emissions except for summer CO. The increase in summer CO declines may be due to a decline of 5.24 ppbv/year trend in biomass burning emissions over the study period; this is higher than the 2.33 ppbv/year North American anthropogenic CO model decline. Winter O3 is the only season which goes from showing a negative trend to a positive trend.
Resumo:
Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 ± 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.
Resumo:
The precipitation response to radiative forcing (RF) can be decomposed into a fast precipitation response (FPR), which depends on the atmospheric component of RF, and a slow response, which depends on surface temperature change. We present the first detailed climate model study of the FPR due to tropospheric and stratospheric ozone changes. The FPR depends strongly on the altitude of ozone change. Increases below about 3 km cause a positive FPR; increases above cause a negative FPR. The FPR due to stratospheric ozone change is, per unit RF, about 3 times larger than that due to tropospheric ozone. As historical ozone trends in the troposphere and stratosphere are opposite in sign, so too are the FPRs. Simple climate model calculations of the time-dependent total (fast and slow) precipitation change, indicate that ozone's contribution to precipitation change in 2011, compared to 1765, could exceed 50% of that due to CO2 change.
Resumo:
As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.
Resumo:
The aim of this work is to study the tropospheric ozone concentrations and daily peak cycles in the Lisbon MetropolitanArea (LMA) during the summer season (June, July and August, JJA) covering the 4-yr study period 2002-2005. Theresults show that all the stations have the same pattern: a minimum in the early morning followed by an increase at 1000UTC reaching to a peak at 1300-1400 UTC, dropped again to minimum values 1800 UTC but with different concentrationsdue to regional and local wind circulations and complex dynamic interactions. We identified in Lisbon city the ozone “weekendeffect”. Finally, we studied an episode of very high levels of tropospheric ozone and related daily ozone concentrationswith some meteorological variables.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.
Resumo:
Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere ( up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered ( constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 28.6 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.25 Wm(-2) and 0.45 Wm(-2) due to ozone change in the troposphere and - 0.123 Wm(-2) and + 0.066 Wm(-2) due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. In most models the isolated effect of climate change is an enhancement of the tropospheric ozone column increase, while the stratospheric reduction becomes slightly less severe. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.10 Wm(-2), while the radiative forcing due to stratospheric ozone change is reduced by up to 0.034 Wm(-2). Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive.
Resumo:
To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results indicate that on global annual average lower tropospheric ozone responds most sensitive to ship emissions (50.6%±10.9% of the total traffic induced perturbation), followed by road (36.7%±9.3%) and aircraft exhausts (12.7%±2.9%), respectively. In the northern upper troposphere between 200–300 hPa at 30–60° N the maximum impact from road and ship are 93% and 73% of the maximum effect of aircraft, respectively. The latter is 0.185 ppbv for ozone (for the 5% case) or 3.69 ppbv when scaling to 100%. On the global average the impact of road even dominates in the UTLS-region. The sensitivity of ozone formation per NOx molecule emitted is highest for aircraft exhausts. The local maximum effect of the summed traffic emissions on the ozone column predicted by the models is 0.2 DU and occurs over the northern subtropical Atlantic extending to central Europe. Below 800 hPa both ozone and OH respond most sensitively to ship emissions in the marine lower troposphere over the Atlantic. Based on the 5% perturbation the effect on ozone can exceed 0.6% close to the marine surface (global zonal mean) which is 80% of the total traffic induced ozone perturbation. In the southern hemisphere ship emissions contribute relatively strongly to the total ozone perturbation by 60%–80% throughout the year. Methane lifetime changes against OH are affected strongest by ship emissions up to 0.21 (± 0.05)%, followed by road (0.08 (±0.01)%) and air traffic (0.05 (± 0.02)%). Based on the full scale ozone and methane perturbations positive radiative forcings were calculated for road emissions (7.3±6.2 mWm−2) and for aviation (2.9±2.3 mWm−2). Ship induced methane lifetime changes dominate over the ozone forcing and therefore lead to a net negative forcing (−25.5±13.2 mWm−2).
Resumo:
SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.
Resumo:
Now that stratospheric ozone depletion has been controlled by the Montreal Protocol1, interest has turned to the effects of climate change on the ozone layer. Climate models predict an accelerated stratospheric circulation, leading to changes in the spatial distribution of stratospheric ozone and an increased stratosphere-to-troposphere ozone flux. Here we use an atmospheric chemistry climate model to isolate the effects of climate change from those of ozone depletion and recovery on stratosphere-to-troposphere ozone flux and the clear-sky ultraviolet radiation index—a measure of potential human exposure to ultraviolet radiation. We show that under the Intergovernmental Panel on Climate Change moderate emissions scenario, global stratosphere-to- troposphere ozone flux increases by 23% between 1965 and 2095 as a result of climate change. During this time, the clear-sky ultraviolet radiation index decreases by 9% in northern high latitudes — a much larger effect than that of stratospheric ozone recovery — and increases by 4% in the tropics, and by up to 20% in southern high latitudes in late spring and early summer. The latter increase in the ultraviolet index is equivalent to nearly half of that generated by the Antarctic ‘ozone hole’ that was created by anthropogenic halogens. Our results suggest that climate change will alter the tropospheric ozone budget and the ultraviolet index, which would have consequences for tropospheric radiative forcing, air quality and human and ecosystem health.