989 resultados para Tropical atlantic
Resumo:
Squids of the family Ommastrephidae are a vital part of marine food webs and support major fisheries around the world. They are widely distributed in the open ocean, where they are among the most abundant in number and biomass of nektonic epipelagic organisms. In turn, seven of the 11 genera of this family (Dosidicus, Illex, Martialia, Nototodarus, Ommastrephes, Sthenoteuthis, and Todarodes) are heavily preyed upon by top marine predators, i.e., birds, mammals, and fish, and currently support fisheries in both neritic and oceanic waters (Roper and Sweeney, 1984; Rodhouse, 1997). Their commercial importance has made the large ommastrephids the target of many scientific investigations and their biology is consequently reasonably well-known (Nigmatullin et al., 2001; Zuyev et al., 2002; Bower and Ichii, 2005). In contrast, much less information is available on the biology and ecological role of the smaller, unexploited species of ommastrephids (e.g., Eucleoteuthis, Hyaloteuthis, Ornithoteuthis, and Todaropsis).
Resumo:
The distribution of dissolved, soluble and colloidal fractions of Al and Ti was assessed by ultrafiltration studies in the upper water column of the eastern tropical North Atlantic. The dissolved fractions of both metals were found to be dominated by the soluble phase smaller than 10 kDa. The colloidal associations were very low (0.2–3.4%) for Al and not detectable for Ti. These findings are in some contrast to previous estimations for Ti and to the predominant occurrence of both metals as hydrolyzed species in seawater. However, low tendencies to form inorganic colloids can be expected, as in seawater dissolved Al and dissolved Ti are present within their inorganic solubility levels. In addition, association with functional organic groups in the colloidal phase is unlikely for both metals. Vertical distributions of the dissolved fractions showed surface maxima with up to 43 nM of Al and 157 pM of Ti, reflecting their predominant supply from atmospheric sources to the open ocean. In the surface waters, excess dissolved Al over dissolved Ti was present compared to the crustal source, indicating higher solubility and thus elevated inputs of dissolved Al from atmospheric mineral particles. At most stations, subsurface minima of Al and Ti were observed and can be ascribed to scavenging processes and/or biological uptake. The dissolved Al concentrations decreased by 80–90% from the surface maximum to the subsurface minimum. Estimated residence times in the upper 100 m of the water column ranged between 1.6 and 4 years for dissolved Al and between 14 and 17 years for dissolved Ti. The short residence times are in some contrast to the low colloidal associations of Al and Ti and the assumed role of colloids as intermediates in scavenging processes. This suggests that either the removal of both metals occurs predominantly via direct transfer of the hydrolyzed species into the particulate fraction or that the colloidal phase is rapidly turned over in the upper water column.