915 resultados para Tropical Woodland
Resumo:
Nest use, home-range characteristics and nightly movements by the northern bettong (Bettongia tropica) were examined before and after a low- to moderate-intensity fire in sclerophyll woodland in north-eastern Australia using radio-telemetry. In all, 23 animals were radio-tracked at three-month intervals between February 1995 and May 1996. During November 1995 a low- intensity experimental fire burned the entire home range of most animals. The northern bettong appeared fairly catholic in choice of nest site, with a variety of nest locations and nesting materials used. Prior to the fire, nests were generally located in areas of dense cover, such as the skirts of grass trees (46%) or grass close to a log (29%). After fire removed most ground cover in the nesting areas of most animals, bettongs used remaining shelter such as boulder piles (45%), recently fallen trees (8%) and patches of unburnt vegetation (21%). Nest areas (10.1 ha) of males were significantly larger than those of females (5.4 ha). Home ranges of both sexes were large (59 ha) and most ranges lacked distinct core areas, suggesting that bettongs used all parts of their home ranges equally. High mean rates of nightly movement by the northern bettong indicated that large distances were moved within home ranges during nightly foraging. No significant fire-related changes were detected in home-range size, home-range location, nest-area location or mean rates of nightly movement, suggesting that the northern bettong is well adapted to the low- and medium-intensity fires that characterise its habitat.
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
Eucalyptus savannas on low nutrient soils are being extensively cleared in Queensland. In this paper we provide background information relevant to understanding nutrient (particularly nitrogen) dynamics in sub/tropical savanna, and review the available evidence relevant to understanding the potential impact of clearing Eucalyptus savanna on nutrient relations. The limited evidence presently available can be used to argue for the extreme positions that: (i) woody vegetation competes with grasses Cor resources. and tree/shrub clearing improves pasture production, (ii) woody vegetation benefits pasture production. At present, the lack of fundamental knowledge about Australian savanna nutrient relations makes accurate predictions about medium- and long-term effects of clearing on nutrient relations in low nutrient savannas difficult. The future of cleared savannas will differ if herbaceous species maintain all functions that woody vegetation has previously held, or if woody species have functions distinct from those of herbaceous vegetation. Research suggests that savanna soils are susceptible to nitrate leaching, and that trees improve the nutrient status of savanna soils in some situations. The nitrogen capital of cleared savanna is at risk if mobile ions are not captured efficiently by the vegetation. and nitrogen input via N-2 fixation from vegetation and microbiotic crusts is reduced. In order to predict clearing effects on savanna nutrient relations, research should be directed to answering (i) how open or closed nutrient cycles are in natural and cleared savanna, (ii) which functions are performed by savanna constituents such as woody and herbaceous vegetation, native and exotic plant species. termites, and microbiotic 7 crusts in relation to nutrient cycles. In the absence of detailed knowledge about savanna functioning, clearing carries the risk of promoting continuous nutrient depiction.
Resumo:
The Cerrado region still receives relatively little ornithological attention, although it is regarded as the only tropical savanna in the world considered to be a biodiversity hotspot. Cerradão is one of the least known and most deforested Cerrado physiognomies and few recent bird surveys have been conducted in these forests. In order to rescue bird records and complement the few existing inventories of this under-studied forest type in the state of São Paulo, we looked for published papers on birds of cerradão. Additionally we surveyed birds at a 314-ha cerradão remnant located in central São Paulo, Brazil, from September 2005-December 2006 using unlimited distance transect counts. Out of 95 investigations involving cerradão bird studies, only 17 (18%) investigations teased apart bird species recorded inside cerradão from those recorded in other physiognomies of Cerrado. Except for one study, no research found more than 64 species in this type of forest, a result shared within many regions from Brazil and Bolivia. Differences in species richness do not seem be related with levels of disturbance of landscape or fragment size. Considering all species recorded in cerradão in Brazil and Bolivia, a compilation of data accumulated 250 species in 36 families and 15 orders. In recent surveys at central São Paulo, we recorded 48 species in 20 families, including the Pale-bellied Tyrant-Manakin Neopelma pallescens, threatened in São Paulo, and the Helmeted Manakin Antilophia galeata, near threatened in the state and endemic to the Cerrado region. Among the most abundant species inside this fragment, none was considered to be neither threatened nor endemic.
Resumo:
Postglacial expansion of deciduous oak woodlands of the Zagros—Anti-Taurus Mountains, a major biome of the Near East, was delayed until the middle Holocene at ~6300 cal. yr BP. The current hypotheses explain this delay as a consequence of a regional aridity during the early Holocene, slow migration rates of forest trees, and/or a long history of land use and agro-pastoralism in this region. In the present paper, support is given to a hypothesis that suggests different precipitation seasonalities during the early Holocene compared with the late Holocene. The oak species of the Zagros—Anti-Taurus Mts, particularly Quercus brantii Lindl., are strongly dependent on spring precipitation for regeneration and are sensitive to a long dry season. Detailed analysis of modern atmospheric circulation patterns in SW Asia during the late spring suggests that the Indian Summer Monsoon (ISM) intensification can modify the amount of late spring and/or early summer rainfall in western/northwestern Iran and eastern Anatolia, which could in turn have controlled the development of the Zagros—Anti-Taurus deciduous oak woodlands. During the early Holocene, the northwestward shift of the Inter-Tropical Convergence Zone (ITCZ) could have displaced the subtropical anticyclonic belt or associated high pressure ridges to the northwest. The latter could, in turn, have prevented the southeastward penetration of low pressure systems originating from the North Atlantic and Black Sea regions. Such atmospheric configuration could have reduced or eliminated the spring precipitation creating a typical Mediterranean continental climate characterized by winter-dominated precipitation. This scenario highlights the complexity of biome response to climate system interactions in transitional climatic and biogeographical regions.
Resumo:
Sampling owls in a reliable and standardized way is not easy given their nocturnal habits. Playback is a widely employed technique to survey owls. We assessed the influence of wind speed, temperature, air humidity, and moon phase on the response rate of the Tropical Screech Owl Megascops choliba and the Burrowing Owl Athene cunicularia in southeast Brazil. Tropical Screech Owl occurs in scrubland and wooded habitats, whereas the Burrowing Owl inhabits open grasslands to grassland savannah. Sixteen survey points were systematically distributed in four different landscape types, ranging from open grassland to woodland savannah. Field work was conducted in 2004 from June to December, the reproductive season of the two owl species. Our study design consisted of eight field expeditions of five nights each; four expeditions occurred under full moon and four under new moon conditions. At each survey station, we performed a broadcast/listening sequence involving several calls and vocalizations from each species, starting with Tropical Screech Owl (the smaller species). From 112 sample periods for each species within their respective preferred habitats, we obtained 54 responses from Tropical Screech Owl (48% response rate) and 30 responses (27% response rate) from Burrowing Owl. We found that the response rate of Tropical Screech Owl increased under conditions of higher temperature and air humidity, while the response rate of Burrowing Owl was higher during full moon nights.
Resumo:
The hunting spider communities of the Dionycha clade were studied 1986 through 1988 in fragmented woodlands and secondary agricultural habitats of the Botucatu area in São Paulo state, Brazil. The original vegetation of mainly tropical Atlantic rain forest (Mata Atlantica) was cleared already 70 years ago. In a total sample of over 1000 adult spiders, 247 species belonging to 12 families Mere determined. A decreasing frequency and diversity of spiders rc as found if forest remnants were compared with sugar cane fields and cattle pasture. The specific composition of the spider fauna as surveyed in different habitats is discussed under ecological aspects and in relation to the history of land use.
Resumo:
O Cerrado ainda recebe pouca atenção no que diz respeito à ornitologia embora seja a única savana tropical do mundo considerada um hotspot de biodiversidade. O cerradão é uma das fisionomias menos conhecidas e mais desmatadas do bioma e poucos levantamentos avifaunísticos foram realizados nessas florestas. Para revisar os estudos sobre aves de cerradão e complementar os poucos inventários já existentes realizados nesse tipo florestal no estado de São Paulo, foi realizado um levantamento bibliográfico dos estudos publicados sobre aves de cerradão. Adicionalmente foi conduzido um levantamento das aves de um fragmento de cerradão de 314 ha localizado na região central do estado de São Paulo, Brasil, entre setembro de 2005 e dezembro de 2006 com a utilização de transecções lineares com raio ilimitado de detecção. de 95 estudos envolvendo aves de cerradão, apenas 17 (18%) discriminaram espécies registradas dentro desta fisionomia daquelas que obtiveram registros em outros ambientes de Cerrado. Exceto por um estudo, nenhuma outra investigação encontrou mais de 64 espécies de aves neste ambiente, resultado compartilhado com diversas regiões do Brasil e também da Bolívia. Diferenças no número de espécies entre cerradões não puderam ser atribuídas à degradação dos ambientes estudados ou tamanho de fragmento. Considerando os registros de cerradões no Brasil e na Bolívia, a compilação de dados acumulou 250 espécies distribuídas em 36 famílias e 15 ordens. Durante nossos trabalhos de campo em localidade do interior paulista foram registradas 48 espécies distribuídas em 20 famílias, incluindo o fruxu-do-cerradão (Neopelma pallescens), ameaçada em São Paulo, e o soldadinho (Antilophia galeata), quase ameaçada no estado e endêmica do Cerrado. Dentre as espécies mais abundantes no fragmento, nenhuma delas é ameaçada ou endêmica do bioma.
Resumo:
During the last years tropical forest has been a target of intense study especially due to its recent big scale destruction. Although a lot still needs to be explored, we start realizing how negative can the impact of our actions be for the ecosystem. Subsequently, the living community have been developing strategies to overcome this problem avoiding bottlenecks or even extinctions. Cooperative breeding (CB) has been recently pointed out as one of those strategies. CB is a breeding system where more than two individuals raise one brood. In most of the cases, extra individuals are offspring that delay their dispersal and independent breeding what allows them to help their parents raising their siblings in the subsequent breeding season. Such behavior is believed to be due, per example, to the lack of mates or breeding territories (ecological constraints hypothesis), a consequence of habitat fragmentation and/or disturbance. From this point, CB is easily promoted by a higher reproductive success of group vs pairs or single individuals. Accordingly, during this thesis I explore the early post-fledging survival of a cooperative breeding passerine, namely the impact of individual/habitat quality in its survival probability during the dependence period of the chicks. Our study species is the Cabanis’s greenbul (Phyllastrephus cabanisi), a medium-sized, brownish passerine, classified within the Pycnonotidae family. It is found over part of Central Africa in countries such as Angola, Democratic Republic of the Congo, Mozambique and Kenya, inhabiting primary and secondary forests, as well as woodland of various types up to 2700m of altitude. Previous studies have concluded that PC is a facultative cooperative breeder. This study was conducted in Taita Hills (TH) at the Eastern Arc Mountains (EAM), a chain of mountains running from Southeast Kenya to the South of Tanzania. TH comprises an area of 430 ha and has been suffering intense deforestation reflecting 98% forest reduction over the last 200 years. Nowadays its forest is divided in fragments and our study was based in 5of those fragments. We access the post-fledging survival through radio-telemetry. The juvenile survey was done through the breeding females in which transmitters were placed with a leg-loop technique. Ptilochronology is consider to be the study of feather growth bars and has been used to study the nutritional state of a bird. This technique considers that the feather growth rate is positively proportional to the individual capability of ingesting food and to the food availability. This technique is therefore used to infer for individual/habitat quality. Survival was lowest during the first 5 days post-fledging representing 53.3%. During the next 15 days, risk of predation decreased with only 14.3% more deceased individuals. This represents a total of only 33% survived individuals in the end of the 50 days. Our results showed yet a significant positive relationship between flock size and post-fledging survival as well as between ptilochronology values and post-fledgling survival. In practice, these imply that on this population, as bigger the flock, as greater the post fledging survival and that good habitat quality or good BF quality, will lead to a higher juvenile survival rate. We believe that CB is therefore an adaptive behaviour to the lack of mates/breeding territory originated from the mass forest destruction and disturbance. Such results confirms the critical importance of habitat quality in the post-fledging survival and, for the first time, demonstrates how flock size influences the living probability of the juveniles and therefore how it impacts the (local) population dynamics of this species. In my opinion, future research should be focus in disentangle individual and habitat quality from each other and verify which relationship exist between them. Such study will allow us to understand which factor has a stronger influence in the post-fledging survival and therefore redirect our studies in that direction. In order to confirm the negative impact of human disturbance and forest fragmentation, it would be of major relevance to compare the reproductive strategies and reproductive success of populations living in intact forests and disturbed patches.
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
Resumo:
Although Brazil is the third largest fruit producer in the world, several specimens consumed are not well studied from the chemical viewpoint, especially for quantitative analysis. For this reason and the crescent employment of mass spectrometry (MS) techniques in food science we selected twenty-two phenolic compounds with important biological activities and developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method using electrospray (ESI) in negative ion mode aiming their quantification in largely consumed Brazilian fruits (açaí-do-Amazonas, acerola, cashew apple, camu-camu, pineapple and taperebá). Multiple reaction monitoring (MRM) was applied and the selection of proper product ions for each transition assured high selectivity. Linearity (0.995
Resumo:
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments - sedimentary, crystalline, and inselberg -representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.
Resumo:
Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish, implicated in skin and gill disease, often causing high mortality. The aim of this study was the isolation and characterization of Flavobacterium columnare in tropical fish in Brazil. Piracanjuba (Brycon orbignyanus), pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum) and cascudo (Hypostomus plecostomus) were examined for external lesions showing signs of colunmaris disease such as greyish white spots, especially on the head, dorsal part and caudal fin of the fish. The sampling comprised 50 samples representing four different fish species selected for study. Samples for culture were obtained by skin and kidney scrapes with a sterile cotton swabs of columnaris disease fish and streaked onto Carlson and Pacha (1968) artificial culture medium (broth and solid) which were used for isolation. The strains in the liquid medium were Gram negative, long, filamentous, exhibited flexing movements (gliding motility), contained a large number of long slender bacteria and gathered into ‘columns'. Strains on the agar produced yellow-pale colonies, rather small, flat that had rhizoid edges. A total of four Flavobacterium columnare were isolated: 01 Brycon orbignyanus strain, 01 Piaractus mesopotamicus strain, 01 Colossoma macropomum strain, and 01 Hypostomus plecostomus strain. Biochemical characterization, with its absorption of Congo red dye, production of flexirubin-type pigments, H2S production and reduction of nitrates proved that the isolate could be classified as Flavobacterium columnare.