986 resultados para Tropical Storm Lee


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A post Agnes study emphasizing environmental factors...weekly sampling at eight stations from 28 June to August 30, 1972. Spatial and temporal changes in the distribution of many factors, e.g., salinity, dissolved oxygen (DO), seston, particulate carbon and nitrogen, inorganic and organic fractions of dissolved nitrogen and phosphorus, and chlorophyll a were studied and compared to earlier extensive records. Patterns shown by the present data were compared especially with a local heavy storm that occurred in the Patuxent drainage basin during July 1963. Some interesting correlations were observed in the data. (PDF has 39 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ships’ protests have been used for centuries as legal documents to record and detail damages and indemnify Captains from fault. We use them in this article, along with data extracted through forensic synoptic analysis (McNally, 1994, 2004) to identify a tropical or subtropical system in the North Atlantic Ocean in 1785. They are shown to be viable sources of meteorological information. By comparing a damaging storm in New England in 1996, which included an offshore tropical system, with one reconstructed in 1785, we demonstrate that the tropical system identified in a ship’s protest played a significant role in the 1785 storm. With both forensic reconstruction and anecdotal evidence, we are able to assess that these storms are remarkably identical. The recurrence rate calculated in previous studies of the 1996 storm is 400–500 years. We suggest that reconstruction of additional years in the 1700s would provide the basis for a reanalysis of recurrence rates, with implications for future insurance and reinsurance rates. The application of the methodology to this new data source can also be used for extension of the hurricane database in the North Atlantic basin, and elsewhere, much further back into history than is currently available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical Storm Lee produced 25-36 cm of rainfall in north-central Pennsylvania on September 4th through 8th of 2011. Loyalsock Creek, Muncy Creek, and Fishing Creek experienced catastrophic flooding resulting in new channel formation, bank erosion, scour of chutes, deposition/reworking of point bars and chute bars, and reactivation of the floodplain. This study was created to investigate aspects of both geomorphology and sedimentology by studying the well-exposed gravel deposits left by the flood, before these features are removed by humans or covered by vegetation. By recording the composition of gravel bars in the study area and creating lithofacies models, it is possible to understand the 2011 flooding. Surficial clasts on gravel bars are imbricated, but the lack of imbrication and high matrix content of sediments at depth suggests that surface imbrication of the largest clasts took place during hyperconcentrated flow (40-70% sediment concentration). The imbricated clasts on the surface are the largest observed within the bars. The lithofacies recorded are atypical for mixed-load stream lithofacies and more similar to glacial outburst flood lithofacies. This paper suggests that the accepted lithofacies model for mixed-load streams with gravel bedload may not always be useful for interpreting depositional systems. A flume study, which attempted to duplicate the stratigraphy recorded in the field, was run in order to better understand hyperconcentrated flows in the study area. Results from the study in the Bucknell Geology Flume Laboratory indicate that surficial imbrication is possible in hyperconcentrated conditions. After flooding the flume to entrain large amounts of sand and gravel, deposition of surficially imbricated gravel with massive or upward coarsening sedimentology occurred. Imbrication was not observed at depth. These experimental flume deposits support our interpretation of the lithofacies discovered in the field. The sizes of surficial gravel bar clasts show clear differences between chute and point bars. On point bars, gravels fine with increasing distance from the channel. Fining also occurs at the downstream end of point bars. In chute deposits, dramatic fining occurs down the axis of the chute, and lateral grain sizes are nearly uniform. Measuring the largest grain size of sandstone clasts at 8-11 kilometer intervals on each river reveals anomalies in the downstream fining trends. Gravel inputs from bedrock outcrops, tributaries, and erosion of Pleistocene outwash terraces may explain observed variations in grain size along streams either incised into the Appalachian Plateau or located near the Wisconsinan glacial boundary. Atomic Mass Spectrometry (AMS) radiocarbon dating of sediment from recently scoured features on Muncy Creek and Loyalsock Creek returned respective ages of 500 BP and 2490 BP. These dates suggest that the recurrence interval of the 2011 flooding may be several hundred to several thousand years. This geomorphic interval of recurrence is much longer then the 120 year interval calculated by the USGS using historical stream gauge records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Convective storm rainfall is of special importance to urban hydrological studies due to its temporal and spatial variability. Although dense networks of recording rain gauges can be employed to characterize such rainfall, very few investigations of this type have been undertaken due to their prohibitive cost. This paper reports some data on characteristics of tropical convective storms obtained from radar at Bauru in the State of São Paulo, Brazil. Periods of convective precipitation were identified by exclusion of those related to frontal activity with the help of synoptic maps and the radar screen record. The occurrence and evolution of convective storms were observed in two 28 km × 28 km windows obtaining information on the life history of convective cells and the magnitude of rainfall. Frequency distributions of the time of occurrence of convective rainfall, cell size, area covered, life duration and maximum and average rainfall observed in the experimental areas are presented and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tropical Depression 16 (TD16) crept up on disparate populations in Belize over a period 8-16 October 2008. TD16 struck less than five months after the first named tropical storm of the 2008 Atlantic season, Arthur. The storm had been forecasted to dump up to 10 inches of rain over Belize and up to 15 inches in isolated areas. Arthur had devastating effects on Belize, particularly the southern regions where bridges collapsed and lives were lost. It was in the aftermath of such devastation that Belize faced TD16. The consequence of TD16 is what falls under the purview of this assessment.